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Executive Summary 

1.        OBJECTIVE OF THE INITIATIVE 

The objective of the program was to develop methodologies for 

implementing Metal Matrix (MMC) and Ceramic Matrix (CMC) composite materials 

that improve the efficiency of gas/aero-engines and reduce their environmental 

impact. These materials can operate at high temperatures and have the high 

strength to weight ratios which make them attractive candidates. 

Development based on try and test methods is expensive and knowledge 

gained in this way can be quickly overcome by advancements in new materials and 

processes. The approach taken in this initiative was to demonstrate how the 

mechanisms which determine the properties of MMCs and CMCs can be related to 

both the manufacture and design of aero-engines. In this way the knowledge base 

and the design procedures provide a permanent framework which can 

accommodate advances in new materials and design concepts. 

2.        GENERAL STRATEGY 

The overall program embraced property profiles, manufacturing, design and 

sensor development (Fig. 1) consistent with a concurrent engineering philosophy. 

For this purpose, the program has created networks with the other national 

composites activities. Research on MMCs was strongly coupled with the 3M Model 

Factory. Major links with Corning, SEP and Westinghouse were established for CMC 

manufacturing. Design Team activities were coordinated by exchange visits 

annually in February/March to Pratt and Whitney, General Electric, McDonnell 

Douglas and Corning. These visits served as a critique of the research plan, as a 

means of disseminating the knowledge and defining the research program for the 

next year. 
The program strategy concerned with design attempted to provide a balance 

of effort between properties and design by conducting studies of mechanisms and 

property profiles, which intersect with a focused activity devoted to design problems 

(Fig. 2). The latter includes two foci, one on MMCs and one on CMCs. Each reflects 

differences in the property emphases required for design. The intersections with the 



mechanism studies ensured that commonalties in behavior were identified, and 

facilitated the efficient transfer of models between MMCs and CMCs. 

To foster the concurrent engineering philosophy, weekly seminars were 

organized at UCSB throughout the year, attended by all members of the team. 

Design group leaders presented regular status seminars. 

Representatives from industry and members of the internal and external 

academic teams would meet annually for ten days at the beginning of each year. 

These meetings were organized so that mornings were devoted to formal 

presentations from industrial and academic participants. Afternoons were used to 

discuss topics which emerged from the formal presentations. Input from these 

sessions and from visits to industry determined the program for the following year. 

3.        ACHIEVEMENTS 

Collaboration with industrial participants was crucial in identifying those 

components for which the introduction of MMC and CMC would improve engine 

performance. The importance of knowledge transfer became very evident and that 

suitable software was more efficient in this respect than were detailed reports. 

Addressing this problem has been a key contribution to the success of the program. 

Reference to this particular effort is made in the achievement summary. 

3.1 The Bridging Mechanism 

The presence of cracks in composite materials is inevitable for a number of 

reasons. Pre-existing cracks are introduced during the manufacturing process. Upon 

application of sufficient stress, matrix cracks form in CMCs, which have a brittle 

matrix. In MMCs cracks form by fatigue. Irrespective of their source, the bridging 

effects of fibers is the underlying mechanism which ensures the integrity of the 

system in the presence of cracks. The bridging mechanism is one of the basic 

concepts needed to appreciate the behavior of composite materials in terms of 

strength, fatigue and the ability to redistribute stress concentrations. 

3.2 Global Load Sharing 

The strength of composite materials in the direction of the fibers is dependent 

on the statistical strength of the fibers and the interface properties between the fiber 

and matrix. An important concept known as Global Load Sharing demonstrates the 



conditions under which a fiber breaks when the load is transferred safely to its 

neighbors without catastrophic failure. Global Load Sharing provides an optimum 

measure against which the performance of fibrous systems can be judged, and has 
proven to be an essential concept in judging structural safety. 

3.3       Software for Metal Matrix Composites 

The properties of MMCs under the multi-axial states of stress occurring in 
practice depend on the statistical strength of the fibers, the elastic/plastic properties 
of the matrix and the strength of the fiber /matrix interface. It has been demonstrated 

that the complex behavior can be readily described by combining knowledge of the 

mechanisms with the results of a small number of discriminatory material tests. 

Software has been developed for the finite element ABAQUS system which can be 

used to predict the performance of complex components. Calculations have been 

performed on components identified by industry, such as a rotating bladed ring used 

in engine compressors, rods for exhaust panel control and in panels joined by bolted 

connections. Parametric studies illustrate the importance of the anisotropic 
properties of the composite and how they can be used to advantage in design. 

3.4       Software for Ceramic/Matrix Composites 

In contrast to metal matrix composites, for which the matrix is ductile, 
ceramic matrix composites have a brittle matrix which cracks when it reaches the so- 

called "matrix cracking stress". In spite of the constituent parts of CMCs being brittle, 
their interplay through the interface and fiber-bridging result in materials which 

demonstrate characteristics similar in some respects to those of ductile materials. 

For example, tests have demonstrated the ability of CMCs to redistribute stress 

concentrations to beneficial effect. Consequently, the holes and intersections which 

occur in practice can sustain loads several times those suggested by conventional 

elastic analysis. To take advantage of this characteristic quantitatively in design, 
constitutive equations have been developed which can be used in a finite element 

package. The finite element package is available as a UMAT routine or as a "hook" 

on the C-Stem system supported by General Electric together with NASA. 

Application of the finite element calculations demonstrate the degree of stress 
redistribution which occurs in panels penetrated by holes in combustor liners and in 
components subjected to bending induced by thermal loading. 



Because the constitutive equations are mechanism-based, extension to 

include the effects of fatigue and creep are readily achieved. Fatigue and creep are 

also included in a UMAT routine of ABAQUS and as a "hook" in the C-Stem 

system. 

3.5 Software for Technology Transfer 

Detailed studies of the work carried out in 1992-1997 are available in the 

annual reports. It was quickly realized the amount of information is so extensive 

that effective communication with industry by means of reports and meetings is 

insufficient. It was described earlier how software has been introduced into 

ABAQUS and C-Stem for application in analysis. This software is essential for 

detailed design, but does not address the problem of transmitting those basic 

concepts which provide the core understanding essential for product development. 

Two approaches have been developed. One approach which has proven to be 

very powerful is the Material Selector Software developed by Professor Ashby. It has 

been shown how material selection can be made systematic by the use of Design 

Indices which relate combinations of material properties to design function. The 

software produced is an excellent example of concurrent engineering which draws 

together very quickly concepts used at the early stages in design. The second 

approach was to use hypertext languages in which concepts such as bridging could be 

explained and the material data drawn together to perform design calculations. The 

hypertext format allows the designer to guide themselves through a learning 

process and at the same time provide the results of design calculations. The software 

was developed using HyperCard before the Web was generally available, which 

represents an obvious extension for future work. 

3.6 Joining and Attachments 

The strength/weight advantage of composite materials can be lost if 

attachments which join one component to another are not well designed. The 

complex geometry of joints can introduce additional failure mechanisms whose 

effects must be appreciated. Joints in metal matrix composites are usually 

accomplished by using a cladding of the matrix material. A test program has been 

completed on a variety of cladding geometries to determine their affect on the 

strength and fatigue properties of the joints. Failure maps have been produced j 

which can be used directly in design. 
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Complex geometries have also been studied for joining CMCs. To simulate a 

circumstance commonly occurring in practice, tension panels perforated by holes 
(with or without pins) have been tested. Another geometry which is convenient 

and inexpensive consists of two straight panels bonded together by a circular panel. 

This design is vulnerable to failure by interlaminar debonding. Theoretical and 

experimental studies have quantified the conditions for this failure mechanism. 

Design graphs have been developed giving geometries which can be safely used in 

practice. The studies on joints and attachments have been supported by the stress 

calculations conducted using the software referred to in Sections 3.3 and 3.4, and to 

the methods which measure stress redistribution, referred to in Section 3.0. 

3.7 Development Of Oxide/Oxide CMCs 

Tests performed on SiC/SiC composites at temperatures in the range 

750-900°C indicate that stress can be maintained for only a few hours. The source of 

this premature failure is a chemical reaction of oxygen with the coating at the 

fiber-matrix interface. It was deduced that this so called "Pest Effect" places a serious 

limit on the temperatures at which SiC/SiC materials can operate. Protective 

coatings on the fibers is a possible solution, which is being pursued by other 

laboratories. A different program was initiated here to synthesize CMCs based on 

oxide fibers and a porous oxide matrix, both of which have the advantage of being 

oxidatively stable. The process is now developed to the point that sizable panels can 

be produced on a regular basis. Despite the absence of a crack deflecting interface, it 

was discovered that the composite is tough and can sustain the strains expected to 

occur in thermally loaded components. Efforts are underway to fabricate a subscale 
combustor liner in collaboration with industry. 

The mechanical properties have been extensively investigated. From the 

tests, constitutive equations have been formulated and introduced into the finite 

element package referred to in Section 3.4. No deterioration was observed in beams 

subjected to combinations of mechanical and cyclic thermal loading. The ability of 

the material to resist high thermal loading in hostile chemical and temperature 
conditions with little deterioration is promising. 

3.8 Delamination And Stitching 

Delamination is a potential failure mechanism in composites subjected to 

high through-thickness thermal gradients, as well as in curved panels connecting 



straight panels. Calculations have been completed which reduce to simple graphical 

representative combinations of loading and material properties to ensure 

delamination is suppressed. If it is not possible to fulfill the required conditions, it 

may be necessary to use through-thickness stitching. This problem has also been 

solved, and the amount of stitching required to prevent delamination is presented 
in simple graphical form. 

3.9      Sensors 

Two systems have been developed which measure stress at the micro and 
macro scale. At the micro-scale the procedure uses the change in frequency in the 

fluorescent emission which occurs when doped oxides are subjected to stress. The 

equipment has been used to measure the stress in individual fibers of composite 

materials with the result that the in-situ properties of the fibers have been measured 

and the results compared with the global load sharing model referred to in Section 
3.1. 

The second technique makes use of the elastic/thermal coupling which 

occurs in materials. By measuring small changes in temperature upon the 

application of in-plane cyclic loads, it is possible to infer the stress in materials with 

non-linear characteristics. The method demonstrates the beneficial stress 

redistribution which occurs in CMCs which rationalizes their notch strengthening 
characteristics. 
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TIME DEPENDENT CRACK INITIATION AND 

GROWTH IN CERAMIC MATRIX COMPOSITES 

Matthew R. BegLey 
Harvard University 

Cambridge, MA 02138 

Brian N. Cox 
Rockwell International 

Thousand Oaks, CA 93017 

Robert M. McMeeking 
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Santa Barbara, CA 93107 

ABSTRACT 

Matrix cracking in ceramic matrix composites with fine grained fibers at high 
temperatures will be governed by fiber creep, as relaxation of the fibers eliminates crack tip 
shielding. Using a time dependent bridging law which describes the effect of creeping 
fibers bridging a crack in an elastic matrix, crack growth initiation and history have been 
modeled. For a stationary crack, crack tip stress intensity factors as a function of time are 
presented to predict incubation times before subcritical crack growth. Two crack growth 
studies are reviewed: a constant velocity approximation for small-scale bridging, and a 
complete velocity history analysis which can be used to predict crack length as a function of 
time. The predictions are summarized and discussed in terms of identifying various 
regimes of crack growth initiation, subcritical growth, and catastrophic matrix cracking. 
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Young's modulus of the fibers and matrix 
rule of mixtures composite Young's modulus 
composite modulus which accounts for orthotropy 
fiber volume fraction 
fiber diameter 

creep coefficient of the fibers (ef =—+B<rf) 
Ef 

modified creep coefficient of the fibers 

shear sliding stress at the fiber-matrix interface 
bridging stress, bridging stress rate 

total crack opening, total crack opening rate 

rate-independent bridging coefficient (8 = Xo2) 

characteristic relaxation time of intact composite 

critical stress intensity factor for matrix crack extension 
far-field applied stress intensity factor 

steady-state matrix cracking stress 
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total crack opening at steady-state matrix cracking stress (for 
the rate-independent case) 

normalized critical total crack opening governing fiber failure 

crack half length, crack tip velocity 

normalized steady-state crack velocity 

normalized applied stress intensity factor 

normalized total fiber strain at the crack plane 

normalized critical total strain to fiber failure 

asymptotic applied stress intensity factor at low crack speeds 

asymptotic bridge length at low crack speeds 
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1. INTRODUCTION 
High strength ceramic fibers can be achieved by decreasing fiber grain size, which 

limits the flaw size. Ceramic matrix composites (CMCs) are made by combining these 
fibers with relatively coarse grained matrices. Since the role of the matrix is generally to 
provide ductility to the composite, the decrease in matrix strength due to large flaw sizes is 
not considered detrimental. The low temperature behavior of such composites has been 
studied extensively both experimentally and analytically, and is generally well understood1. 

The primary motivation for using such composites, however, is the high 
temperature capabilities of the ceramic constituents. At high temperatures, predicting 
composite performance becomes more complicated due to oxidation and creep2-3. The fine 
grained fibers are particularly susceptible to creep, as small grain sizes increase avenues for 
grain boundary diffusion. (The coarser grained matrix can be considered to behave 
elastically, as creep rates are significantly lower.) Crack bridging by intact fibers becomes 
time-dependent at high temperatures, as fiber creep causes crack closure forces to decay 
over time4-11. Furthermore, cracks that can be considered benign at low temperatures may 
cause significant problems at high temperatures, as they may provide pathways for 
oxidation to occur in the interior of the composite or result in a loss of hermeticity12. The 
room temperature question of crack stability thus changes to questions about when and 
how fast cracks grow. 

This paper is intended to provide a summary of some recent work on predicting 
time dependent crack growth in CMCs caused by fiber creep at high temperatures. A time 
dependent bridging law has been developed to describe the effect of creeping fibers 
bridging a matrix crack in a composite whose matrix can be considered elastic*. This 
bridging law has been used to estimate the time needed to initiate crack growth from both 
fully bridged and partially bridged stationary cracks5. The issue of crack growth rate has 
been addressed in both the small-scale and luge-scale bridging regimes6*7. Representative 
results are presented and used to discuss the issues raised by time dependent crack growth 
in both unidirectional and laminated CMCs. 

In the crack behavior studied in this work, a finite crack tip stress intensity factor is 
assumed to exist For analysis of initiation times, it is assumed that the crack geometry and 
loading is such that the crack tip stress intensity factor, K&» is less than the toughness of 
the matrix, K« (adjusted for matrix volume fraction.) For crack growth studies, it is 
assumed that crack growth occurs under the condition that K^p = K«. The analyses and 
results are often simüar to a cohesive zone approach in different materials13-14; however, it 
should be emphasized that the assumption of a finite stress intensity factor at the crack tip 
(based on the fact that the matrix remains elastic) leads to significant differences. 

2. TIME DEPENDENT BRIDGING 
The crack tip shielding provided by creeping fibers bridging a matrix crack can be 

analyzed by determining the relationship between the crack opening rate and bridging 
traction for a representative bridged section of the crack. Such cell models can then be 
integrated with traditional fracture mechanic relations to develop an integral equation which 
is solved for the closure forces in the bridged section of the crack. These closure forces are 
then used in the usual manner to predict the reduction in crack tip stress intensity factor. 

A full derivation for a creeping fiber embedded in an elastic matrix results in the 
following bridging law, which incorporates the effects of frictional slip between the fiber 
and the matrix4; 
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D is the diameter of the fibers, f is the fiber volume fraction, B is the creep coefficient of 
the fibers; t is the shear sliding stress between the fibers an the matrix, Ef, Em, and EL are 
the elastic moduli of the fiber, matrix and composite, respectively; and T is the 
characteristic relaxation time for the intact composite, given by EiyB(l-f)EjftEf. 

For a growing crack, the convolution integrals in (1) (which reflect the history 
dependence of the bridging stress) complicate things, and the following simplified bridging 
law has been used in crack growth studies6-7; 

8(t) = 2X<y(t)[d(t)+ß<jCt)] (2) 

where 1 is the nit-independent bridging coefficient, and b is a modified creep coefficient 
(Please see the nomenclature table.) The assumptions that justify simplifying Eq. (1) to Eq. 
(2) are based on comparing the relative magnitudes of terms in full bridging law and 
neglecting smaller terms. In summary, Eq. (2) neglects creep of the fibers in the intact 
portion of the composite, which is acceptable during crack growth studies since creep in the 
slip region adjacent to the matrix crack, and the short time (t« T) response of Eq. (1), 
dominate the shielding effect of the fibers. Further details or these assumptions and their 
validity is discussed fully in [5-7]. 

3.       TIME TO INITIATE CRACK GROWTH 
For a given crack geometry and load level, the crack tip stress intensity factor may 

be beneath the critical stress intensity factor of the matrix, implying that some time is 
required to relax the shielding effect of the fibers to the point that crack growth occurs. 
Such a situation would arise when a matrix flaw exists that spans multiple fibers, provided 
the load is beneath the critical stress to propagate the bridged matrix crack. Another 
example is the case of an overload, where the applied load on the composite decreases; 
during the peak loading, the matrix crack is driven to the length where !£&> = Kc for the 
peak load. If the load is subsequently decreased, K^p falls beneath Kc and some time is 
required to decay the bridging tractions until crack growth occurs. 

In the following calculations, the crack is assumed to be stationary; thus, the 
problem is simply to calculate the evolution of the bridging stress over time. The bridging 
stress profile at a given instant in time was then used to predict the instantaneous value of 
the crack tip intensity factor. The geometry is a fully bridged center crack of length 2a in an 
infinite paneL The crack tip stress intensity factor as a function of time is shown in Figure 
1 for several different cases. 

The curves compare the effects on the crack tip stress intensity factor of two 
different simplifications, for three different load levels. The solid lines were generated 
using the bridging stress profile generated by the solution of an integral equation derived 
using Eq. (2), the simplified bridging law. The dashed lines were calculated using the full 
bridging law and imposing a parabolic approximation for crack opening. (At high loads or 
for short cracks, the crack opening will be nearly parabolic; assuming the form of the 
profile allows the differential form of the integral equation to be reduced to a simple one 
degree of freedom differential equation.) It can be seen that at high loads the effect of the 
convolution integrals is negligible. As discussed in [5], even at lower loads the neglect of 
the convolutions is usually not significant The discrepancy in Figure 1 between the two 
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calculations for the lowest load is mostly a result of the inaccuracy of the parabolic form 
used to reduce the integral equation. 
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Figure 1 
Two calculations for the crack tip stress intensity factor as a function of time for three 

different loads and the case where f=0.3, Ef=Em = EL = E. 

4       CONSTANT  VELOCITY  CRACK   GROWTH:   SMALL-SCALE 
BRIDGING 
In situations where the length of the bridging zone is much smaller than the crack 

length, small-scale bridging is said to apply and the governing equations can be simplified 
from the general case. An example of such a scenario may occur in laminated CMCs, 
where cracks first appear in the 90° layers with fibers perpendicular to the loading 
direction. These cracks will advance into the adjacent 0° plies and arrest at room 
temperature; at loads much smaller than the matrix cracking stress, the bridging zone is 
much smaller than the total crack length. 

The case being modeled here is a semi-infinite crack loaded with a far-field applied 
stress intensity factor, K«,, growing at a constant speed, v««. The bridging law dictating 
material behavior in the bridged zone is given as Eq. (2). Fibers fail in the wake of the 
crack and the bridging zone size remains constant The solution represents a steady-state 
configuration, as the zone of creeping fibers bridging the crack propagates with the crack 
tip. The length of the bridging zone depends on the crack growth rate and is determined by 
a fiber failure criterion. Two failure criteria are presented here: a critical crack opening, 
A«, and a critical total strain in the fiber, ea. 
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Figure 2 illustrates how crack velocity varies as a function of applied stress 
intensity factor K~ for the two cases. For both cases, there is a rapid increase in crack 
velocity as the applied stress intensity factor is raised above the matrix toughness. The 
figure demonstrates the existence of upper and lower bounds on the applied loading. The 
assumption of a finite crack tip stress intensity factor dictates that a minimum K«> exists, 
below which no crack growth will occur, this minimum is merely the matrix toughness. 
For applied loads above this value, fiber creep will decrease bridging tractions to drive 
crack growth, though perhaps at very small velocities. 

—— Critical fiber strain 

Critical opening 

»   »  *   *   *   '   '   '   *   '  '   *   '   '   '   «■««!■   t  i   .   I   .   .  t   .   I   .   .   .   .   I 

1 2 3 4 5 6 7 8 
—       rC-s 

Applied stress intensity factor  K= -JT— 
•V? 

Hgure2 
Steady-state crack velocity as a function of far-field applied stress intensity factor for two 

fiber failure criteria and the case where f * 0.3, Ef=Em = EL = E. 

Since the simplified bridging law (given as Eq. 2) reduces to the appropriate rate 
independent bridging law in the limit of no creep, an upper limit exists. As the applied load 
increases towards the level at which bridging (without creep) is no longer effective enough 
to maintain K^ = Kg, crack velocities tend toward infinity. Thus, the upper limit 
corresponds to load levels at which instantaneous matrix crack occurs. 

One of the attractive results of the simplifying assumptions used in this analysis is 
that they allow closed form asymptotic solutions when crack speeds are low. The 
asymptotic dependence of the bridging zone length and crack velocity on the applied stress 
intensity factor are summarized below for the case where fiber failure is governed by a 
critical strain criterion; 
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These closed form solutions reveal a simple power law relationship between applied stress 
intensity factor and crack velocities that may be useful in comparing with experiments with 
very small bridging zones. 

5.        GENERAL TIME DEPENDENT CRACK GROWTH: LARGE-SCALE 
BRIDGING 
Obviously, cracks may not grow at constant velocity, and the bridging length may 

be comparable to specimen dimensions. For such cases, full large-scale bridging have 
been performed to predict crack length and velocity as a function in time7. Fiber failure 
was not incorporated into the analysis. The geometry being considered is a center crack of 
length 2a in an infinite panel with a 'notch', or unbridged portion of matrix crack of lengths 
2ao. Crack growth is assumed to occur with the condition that the crack tip stress intensity 
factor equals the matrix toughness. The numerical procedure is summarized in [7]; one 
attractive aspect of the technique used is that the bridging law has exactly the correct form 
in the limit of small time increments. Hence, the bridging behavior near the crack tip,, 
where fibers are responding nearly elastically, is captured accurately. The results of these 
analyses are summarized in Figures 3 and 4. 

Crack velocities as a function of crack length are shown in Figure 3 for several 
different values of applied nodes and several different notch sizes. The curves start at 
different initial values of crack length, corresponding to the case where K^, = K« for the 
rate independent case. Thus, for these cases the initiation time discussed in section 3 is 
zero. All cases show that the crack will initially decelerate as the rate of decay of bridging 
tractions decreases. After the initial transient has finished, the crack accelerates 
monotonically, eventually becoming asymptotically independent of initial notch size. 

The crack velocity as a function of crack length can be integrated to predict crack 
length as a function of time. Such results are shown in Figure 4 for one of the notch sizes 
in Figure 3 and the same load levels. The curves illustrate the large effect the deceleration 
transient will have on the overall crack growth; the larger the dip in the crack velocity 
curve, the larger the dwell time in Figure 4. For laminates, critical crack lengths at which 
catastrophic cracks cross the specimen may be short, i.e. equal to the ply thickness, 
emphasizing the importance of solutions in the transient regime. 
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Figure 3 
Crack velocity as a function of crack length for several values of applied load and notch 

Sizes using the simplified bridging law 

6.       PREDICTING TIME DEPENDENT CRACK GROWTH IN CMCs 
6.1 Crack growtit initiation 

For a given loading scenario, the first question to answer is whether or not crack 
growth starts immediately, or whether some time is required to decrease the shielding in 
bridged cracks. The answers lie in the tite-indepcndent behavior of CMCs, which has 
been extensively studied; provided the loading rate is high enough, the composite 
constituents will initially respond elastically. The upper limit on the applied loading such 
that crack growth studies are applicable is the steady-state matrix cracking stress, which 
represents the load level at which matrix cracks will propagate across the composite 
catastrophically in a rate-independent manner. 

For cracks created by load histories where the specimen or component is loaded 
monotonically beneath the matrix cracking stress, the transition to subcritical crack growth 
will be instantaneous. Both cracks grown from a notch in a unidirectional composite and 
cracks tunneling into 0° plies in a laminate will arrest at the crack length at which K^» = 
Kg. Therefore, any amount of fiber creep will decrease crack tip shielding and cause crack 
growth; initiation times for these cases are zero. The crack length at which K^, = K« with 
rate-independent behavior will be the initial condition used in the time dependent study. 
The rate independent behavior of both unidirectional CMCs and laminates is summarized in 
[15], which can be used to identify relevant starting geometries for time dependent studies. 
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Crack length as a function of time calculated by Integrating the curves in Figure 3 

Initiation times will not be zero for cracks created by an overload, where the load 
applied to the composite decreases after some maximum. For these cases, the starting 
crack length is the length created by the maximum load, where K^Co»«) = Kc. If the load 
drops, Ktjp will fall below K«, and the crack will remain stationary until fiber creep 
degrades shielding enough to cause crack growth. Obviously, such histories affect 
subsequent crack growth as fiber strains will accumulate. Further modeling and 
experiments are needed to discover the effect of creep prior to crack growth. 

6.2 Regime of subcritical crack growth 
Once crack growth has started, the relevant question to answer is when the cracks 

reach lengths that are undesirable. This is most likely the length at which the crack crosses 
the specimen, resulting in two halves of intact composite held together by creeping fibers. 
For laminates, the critical length at which cracks propagate unstably may be the 0° ply 
width, depending on the ratio of 0°/90° widths15. 

Once the critical crack length has been identified, the models described in Sections 4 
and 5 can be used to estimate the amount of time required to reach this length. Noting that 
am in Figure 3 is on the order of a tenth of a millimeter for most CMCs, it can be seen that 
most (if not all) of the relevant crack growth for typical laminates occurs during the 
transient period of crack growth. Thus, the pertinent regions Figures 3 and 4 are the ones 
where the normalized crack length a/an is less than 10 or so. For loads above 60% of the 
matrix crack stress, the time to reach a critical crack length is quite small, as the transient 
region becomes less and less pronounced. For such cases, matrix cracks quickly cross the 
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specimen and composite rupture is governed by the rapture behavior of the fibers loaded 
uniformly. 

For loads significantly below the matrix cracking stress, velocities will may be quite 
small, implying that fibers have significant time to creep. Naturally, the fibers wül exhibit 
a finite amount of creep ductility and for slower velocities, will fail during the subcritical 
crack growth. A transition exists then, between subcritical crack growth characterized by 
fiber failure in the wake of the crack* and fiber failure after the crack has reached critical 
dimensions7. Experiments are needed to confirm this transition and evaluate the validity of 
the predictions presented here. 

63 Appropriateness of die bridging law and single crack model 
In general, bridging laws developed from cell models fail to capture certain aspects 

of bridging behavior. Notably, the equation presented here does not account for the 
possibility of "reverse" slip, where the direction of relative sliding between the fiber and 
the matrix changes sign. This is most likely to happen in regions of the bridging zone that 
are unloading. For stationary cracks, this is most likely to be the case, and further 
calculations are warranted. For growing cracks, however, it has been shown that growth 
is dominated by the near-tip behavior of the bridging region*-7. Near the crack tip, 
bridging fibers will be loaded rapidly and will respond nearly elastically, or with the 'short 
time' response of the bridging law. In mis regime, both the possibility of 'reverse' slip and 
the convolution integrals in Eq. (1) can be reasonably neglected. 

It should be pointed out that a single crack model does not account for the stress 
redistribution that will occur if multiple matrix cracks occur near a stress concentration. 
Multiple matrix cracks are common, and a more realistic bridging law which incorporates 
the effect of overlapping slip zones would be more useful. Additionally, different weight 
functions used in developing the integral equations could be used, to account for arrays of 
multiple cracks. 

Despite the limitations on the bridging law outlined above, the results will be 
qualitatively consistent with more detailed analyses incorporating reverse slip and crack 
interaction. The essential features of the constitutive law for the bridging zone will not be 
changed by considering slip zone reversal or overlap; namely that the bridging stress 
increases with opening and decays with time. Most importantly, the details of appropriate 
bridging laws always require empirical calibration, preferably with crack growth data 
rather than micromechanical tests16. Regardless of the exact form of the bridging law, 
accurate predictions over a wide range of stress levels should be possible once the model is 
calibrated against experiments. 
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Abstract—Time-dependent crack growth in ceramic matrix composites with linearly creeping fibers in an 
elastic matrix is predicted for bridged regions that are much smaller than the crack length. The relationship 
between crack openings and bridging tractions was modeled previously and accounts for the mechanics 
of fiber pull-out while fibers are creeping. The length of the bridged zone is determined by a fiber failure 
criterion and the condition that the stress intensity factor at the crack tip equals the matrix toughness. 
Solutions that relate constant crack velocities to applied stress intensity factors are presented. Two fiber 
failure criteria are considered: a critical crack opening and a critical total strain in the fiber at the crack 
plane. When fiber failure is governed by a critical crack opening, bridging lengths will decrease with 
increasing velocity. For the case of a critical strain, the steady-state bridge length will increase with 
increasing velocity. Asymptotic analytical solutions are presented for cases where the crack velocity is 
small. © 1997 Acta Metallurgica Inc. 

1. INTRODUCTION 

The first load-induced damage observed in current 
fiber-reinforced ceramic matrix composites (CMCs) 
is usually matrix cracking [1]. Provided the fiber 
matrix interfaces are weak, the matrix cracks are 
bridged by intact fibers. If the cracks initiate at a 
sufficiently large notch, their growth is stable and 
crack arrest will occur at some finite crack length 
at stresses lower than the steady-state cracking 
stress, amc, expected for infinite matrix cracks [2]. In 
unnotched laminates, the matrix cracks initiate as 
tunneling cracks in the 90° plies (Fig. 1) [3,4], 
which can then be regarded as playing the role of 
the notch [5,6]. Thus, if the 90° ply width is 
sufficiently large, the matrix cracks may again 
arrest at finite lengths for stresses lower than <rmc 

[5, 6]. 
The macroscopic stiffness of the composite is 

compromised relatively slightly by finite matrix 
cracks. Much more serious softening is associated 
with multiple matrix cracks that span the whole 
specimen. Similarly, in applications demanding 
hermeticity, when either the ceramic composite must 
contain a gas or fluid or the fibers or fiber/matrix 
interfaces must be protected from a hostile environ- 
ment, finite matrix cracks might be regarded as 
benign. Thus in many cases, the composite might be 
considered not to have failed as long as matrix cracks 
remain finite; and therefore, provided the arrest of 
cracks initiating from 90° plies or stress concentrators 
is permanent, the steady-state matrix cracking stress, 
c-m(:, may be used as a design limit. 

At high temperatures, crack arrest will not be 
permanent, because of the onset of creep. In many 
CMCs, creep occurs first in the fibers, while the 
matrix remains elastic [7, 8]. Creep occurs preferen- 
tially in the fibers (single crystal fibers aside) because 
they are manufactured with small grain size to 
maximize strength. Since matrix cracks concentrate 
stress in bridging fibers, fibers will creep most in the 
wake of matrix cracks. The resulting reduction in 
crack tip shielding will allow previously arrested 
matrix cracks to resume propagation with growth 
rates determined by fiber creep. 

A constitutive law to describe the decaying 
bridging tractions generated by creeping fibers 
coupled to the matrix by friction has already been 
developed by Begley et al. [9]. In a previous paper, 
this law was used to calculate crack growth rates for 
matrix cracks growing away from initial flaws 
(notches or 90° plies) when the fibers creep but never 
fail [10]. However, in that work it was shown that, at 
relatively low stresses, propagation times for the 
matrix cracks were long compared to the time 
required for the creep failure of fibers. Therefore, at 
low stresses, matrix crack propagation should be 
calculated in the presence of fiber failure. 

In one limit of this process, the bridged region of 
the matrix crack will remain small compared to the 
total crack length: this is the limit of small scale 
bridging. Conditions near the crack tip are then 
approximately those of a semi-infinite crack with a 
finite bridged zone and the mechanics of crack 
growth can be investigated without regard to notch 
size or specimen geometry (Fig. 2). 
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Fig. 1. Schematic of tunneling cracks in a 0/90° laminate. 

The results presented in this work will show that 
small scale bridging will be favored when fiber failure 

is governed by a critical creep strain criterion. In this 
case, the length of the zone of bridging fibers 
decreases to zero with the applied stress intensity 
factor. Thus, small scale bridging conditions should 
be commonly found in specimens with machined 
notches at low stresses. 

For naturally occurring matrix cracks in laminates, 
small scale bridging will be most relevant when the 
fracture toughness of the 90° ply is less than half that 
of the 0° plies, and the applied load is only slightly 
higher than that required to initiate matrix cracking 
by crack tunneling. In these conditions, the length of 
the bridging zone as the crack grows away from the 

Far-field applied stress intensity 
factor Koo 

6 total crack opening 

zone of creeping bridging fibers 
steady-state I 

crack velocity T 
i •<- 

matrix crack tip trailing edge of bridged zone 

Fig. 2. Small scale bridging model. 

90° plies into the 0° plies (Fig. 1) will remain small 
compared to the 90° ply width [6]. 

In this paper, the mechanics of crack growth 
governed by fiber creep is examined in the small scale 
bridging limit. Crack growth is assumed to occur 
when the stress intensity of the matrix crack, Klip, 
reaches a critical value, K*, which is related to the 
matrix fracture toughness. The crack velocity is 
calculated as a function of applied stress intensity 
factor assuming a constant crack velocity, which 
corresponds to the attainment of a steady-state 
bridging configuration, which propagates with the 
crack tip. The constant velocity condition can strictly 
only be obtained at constant applied stress intensity 
factor. However, it will be well approximated under 
more general conditions and it is an instructive limit 
for study. 

Two cases are considered, identified by different 
fiber failure conditions. In one case, fibers are 
assumed to fail (and thus no longer provide bridging 
tractions) when the total crack opening reaches a 
time-independent critical value. The other case 
assumes fibers fail when the total strain in the fibers 
(at the crack plane) reaches a constant critical value. 
The length of the bridging region is determined by 
imposing the conditions #lip = fQ and the fiber failure 
criterion. 

/./. Relationship to other rate-dependent bridged 
crack problems 

The work presented here is similar in many regards 
to analyses previously applied to craze crack growth 
in polymers [11-16]. The literature on this subject is 
extensive; only a few examples are discussed here to 
highlight the essential physical differences with the 
case of matrix cracks in CMCs. All analyses of 
polymeric crazes assume that the stress intensity 
factor at the crack tip, i.e. at the end of the bridged 
zone nearest the uncracked material (see Fig. 2), is 
zero. Crack growth is then completely determined by 
the time-dependent responses of the bulk and crazing 
material and the criteria used to determine the 
formation and failure of the craze. The analysis 
provided by Kramer and Hart [15] is framed in terms 
of a non-zero stress intensity factor, but at the trailing 
end of the bridged zone; i.e. the applied stress 
distribution along the bridged zone is assumed to be 
the same as the stress distribution ahead of a crack 
in a linear elastic material. 

Knauss and co-workers [11,12] assume in model- 
ing cracks in polymers that the craze length is 
determined by a critical strain criterion for the failure 
of fibrils that bridge intact regions of the bulk 
material. In their work, the bulk material is assumed 
to be linearly viscoelastic, with nonlinear viscoelastic 
deformation taking place in the craze. Fager and 
co-workers [13,14] used a general power law to 
model the time-dependent deformation of the craze, 
and apply a damage parameter based on critical 
opening to determine when failure occurs in the 
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bridging zone. The intact bulk material is assumed to 
be elastic. Kramer and Hart [15] predict failure of the 
bridging material according to a limiting stress based 
on the strength and spacing of fibrils in the craze 
zone. Schapery [16] assumes a general form 
describing the craze behavior and models the bulk 
material as linear viscoelastic. In Schapery's work, a 
variety of criteria are used for failure of the craze, 
including a critical crack opening and a critical 
amount of work done to the deforming material. 

While the work presented here is similar to the 
analyses outlined above, it deals with different 
physical mechanisms, which lead to distinct crack 
growth characteristics. Since the matrix is elastic, it is 
more reasonable to assume that a finite stress 
intensity factor exists at the crack tip and that crack 
growth in the matrix is governed by its achieving a 
critical value. The assumption of a non-zero stress 
intensity factor at the crack tip is important: the 
steady-state matrix cracking commonly observed in 
CMCs under rate-independent conditions, which are 
a limit of the creep problem, could not be modeled 
otherwise. It has no analogue in polymers. 

Time-dependent crack growth specific to CMCs 
has been investigated by Nair and co-workers 
[17,18]. Crack growth is predicted as a function of 
time for a fully bridged center crack geometry, where 
the fiber-matrix interface creeps and the fibers and 
matrix are elastic. The mechanics of fiber bridging in 
their work differs significantly from those presented 
in this paper. Here the fibers are assumed to creep and 
the fiber-matrix interface properties are time-inde- 
pendent. This is more realistic for CMCs with 
interfaces whose phase composition is stable at 
service temperatures, a highly desirable condition 
that is a universal processing goal. Henager and Jones 
[7, 8] have provided experimental results for time- 
dependent crack growth in CMCs, and also a model 
based on the assumption that fibers creep. In their 
work, time-dependent crack growth is predicted by 
assuming that the fibers bridging a matrix crack 
behave according to a logarithmic creep law taken 
from experiments. However, their model neglects the 
debonding that occurs between the matrix and fibers 
near the crack plane, which is known to be critical in 
crack propagation in CMCs and to their damage 
tolerance. They also ignore the effects of fiber creep 
in the bulk material. More recently, El-Azab and 
Ghoniem [19] have used a time-dependent bridging 
law based on linear fiber creep and frictional sliding 
to predict how bridging tractions decay with time for 
a non-propagating crack. 

Thus, while fibrous composites have been modeled 
in the literature cited above, the mechanics specific to 
bridging by creeping fibers coupled to the matrix by 
friction (i.e. a sliding region between the matrix and 
fibers near the crack plane) have not previously been 
included in creep crack growth models. 

1.2. The time-dependent bridging law 

The bridging law to be used here was derived 
previously [9], assuming the matrix is elastic and that 
slip occurs between the fibers and matrix with a 
time-independent sliding stress along a finite region 
adjacent to the matrix crack. Details of the full 
bridging law are given in the Appendix. In certain 
fairly common circumstances (outlined in the 
Appendix), the bridging stress, c, at time t is related 
to the crack opening displacement, 5, by the 
differential equation 

S(t) = 2Xc(t)[6{t) + ßa(t)} (1) 

where ß is a modified creep coefficient: 

ß = 
BEtEL 

2(1 -f)Em 
(2) 

and   X  is   the   bridging   law   coefficient   for   the 
rate-independent case, i.e. [20, 21] 

b = Xa1 

X = pq -ffEj 
IfrErEl 

(3a) 

(3b) 

with D the fiber diameter,/the fiber volume fraction, 
x the interface friction stress, Em and E; the matrix 
and fiber Young's moduli respectively, and 
£L=/Er+(l-/)£m. 

2. PROBLEM FORMULATION 

2.1. Development of governing integral equation 

The crack velocity is assumed to be constant and 
the bridging tractions along the crack are fixed in 
coordinates translating with the crack tip. Therefore, 
the total opening rate of the crack at x can be written 
as 

t, .     d&(x) . 
(4) 

where S(x) is the derivative with respect to time of the 
total crack opening at a specific distance x from the 
crack tip and a is the steady-state crack velocity. The 
time derivative of the bridging traction can be treated 
in a similar manner, allowing the bridging law (1) to 
be written in the following form: 

d3(x) 
dx   ' 

■■ 2X<x(x) 
do-Qc) 

dx + H- (5) 

Integrating with respect to x yields the steady-state 
crack opening profile in terms of the steady-state 
bridging traction profile and the crack velocity: 

S(x) = X(T2(X) +W- 
a 

o\x) dx. (6) 
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The crack opening profile can also be written as the 
sum of the opening due to the applied stress intensity 
factor and the opening due to fiber bridging [22]: 

6(x) = 
%KX x 

2TT 

_4_ 
cr(x)ln V*+v* dx.   (7) 

equation (A2.1)] with spatial derivatives, as was done 
for the bridging law. Since the stress in the fiber is 
equal to the volume fraction of fibers multiplied by 
the bridging traction, the fiber strain profile along the 
crack (evaluated at the matrix crack plane) is given 
by 

a{x) dx. (10a) 

£ is a composite elastic modulus which accounts for 
orthotropy [23,24] and a is the length of the bridging 
zone (see Fig. 2). 

The crack growth criterion (Kü? = FQ) provides a 
relationship between the applied stress intensity 
factor, the bridging tractions, and the volume 
fraction adjusted matrix toughness (a known 
quantity). Klip is expressed as the sum of the far-field 
applied stress intensity factor Kx and the stress 
intensity factor reduction due to fiber bridging [22]: 

*MiD        ÄW <J(X) / — dx = Kt. 
• '   71X 

(8) 

Setting equation (6) equal to equation (7) and using 
equation (8) to substitute for K„, the following 
integral equation for the bridging traction profile is 
obtained: 

£ 
x_ 
In' 

_4_ 
' ItE 

a(x) In 
/x + ■ 

-2 Ax+ka\x) + 
2/1/5 

(j2(x)dx.   (9) 

Once the bridging traction profile is determined for a 
specified velocity, matrix toughness, and bridge 
length (determined by the fiber failure criterion), the 
applied stress intensity factor needed to maintain that 
velocity can be found via equation (8). 

2.2. Determining the length of the bridging zone: fiber 
failure criteria 

The length of the bridging zone is determined by 
evaluating either the crack opening or the total strain 
in the fiber at the end of the bridging zone, x = a. The 
crack opening profile can be found directly from the 
bridging tractions using equation (6). Since the fiber 
at the end of the bridging zone is exposed to creep for 
the longest time, the crack opening and the total 
strain in the fiber will be largest there. However, the 
maximum fiber stress may be near the crack tip rather 
than at the trailing end of the bridged zone: see 
below. 

If the criterion for fiber failure is maximum total 
strain, the fiber strain profile is found by replacing the 
time derivatives in the fiber creep law [given as 

The first term on the right-hand side represents the 
elastic strain, the second term the additional strain 
due to fiber creep. This expression is then used to 
determine the length of the bridging zone by 
maintaining the condition 

e(ot) = £cr   (fiber strain criterion)       (10b) 

where ea is a fixed critical value. 
If the criterion for fiber failure is a critical crack 

opening, the bridged crack length is found by 
evaluating equation (6) and equating it to the critical 
value, <5cr: 

<5(<x) = ;.<72(a) + ^   ' <r(x) dx = 5« 
a   Jo 

(critical opening criterion). (10c) 

Since the problem is non-linear, iteration must be 
performed to determine the length of the bridging 
zone needed to maintain the failure criterion. Once 
the bridging length is found using equations (9) and 
(10b) [or (9) and (10c)], the applied stress intensity 
factor is found using equation (8). 

2.3. Normalization of the governing integral equation 
and fiber failure criteria 

Introduction of the rate-independent characteristic 
length scale (or bridging length scale) for the 
composite allows a convenient normalization of the 
governing equations. This quantity is given by [2] 

/=(;.£Ä,)2 
(11) 

A matrix crack bridged by rate-independent (non- 
creeping) fibers approaches steady-state conditions 
when its length exceeds P. The steady-state matrix 
cracking stress, amt, given by [20, 25] 

" \2ErElfizfZ T3 

DEi{\ -f)E\ 

is related to / by 

/ = )laa 

(12) 

(13) 

Using these reference values, the governing integral 
equation  (9) can  be rewritten in terms of non- 

36 



BEGLEY et a!.:   CREEP CRACK GROWTH 2901 

dimensional variables: 

2n 
X = - 

In 

1(X) 

X+JX 
X- 

-2 
X 

dX 

where 

+ I2(10 + : 

a_ 
"ßl 

•L\X)dX   (14) 

is the normalized steady-state crack speed; 

I: 
XEcs 

I   '' 

(15) 

(16) 

is the normalized bridging traction; and X s x/l and 
X = x/l. Note that the matrix toughness in equation 
(9) becomes unity when normalized. 

Defining the normalized crack opening, A, by 

A_ 6 J&b 

equation (6) becomes 

K{X)=^-d{X) = J?{X) + ^ 
I Vss 

(17) 

22(JF)d*.(18) 

Consideration of the bridging tractions and openings 
in terms of steady-state rate-independent matrix 
cracking distinguishes the effects of fiber creep, as 
these quantities represent a limit in the absence of 
creep. The normalized applied stress intensity factor 
follows from equation (8): 

Kx, ■■ 
AEKa> KQO 

1 + 2(*)./|pd*.(19) 

The strain in the fibers at the matrix plane is 
normalized according to 

e(X)- 
e{X) 

Er 20*) 

where 

2(1 -f)EmE 1 
ErEL       Uss 

£ss ~ X& 

-Z(X)dX   (20a) 

(20b) 

is the strain that would exist in an uncracked, 
non-creeping composite loaded to the steady-state 
matrix cracking stress, <xmc- Critical values of e will 
usually be ~ 10. 

2.4. Numerical solution of the equations 

The governing integral equation (14), can be solved 
by representing the bridging traction by smooth, 
parametric basis functions defined on small intervals; 
a non-linear matrix equation results which can be 
solved using standard methods. Such methods have 
become common and examples are available in Refs 
26-28. The paper by Begley and McMeeking [28] 
provides details of the particular method used here. 

3. RESULTS 

3.1. Bridging traction distributions 

Examples of bridging traction distributions for 
various crack speeds are given in Fig. 3(a), for the 
case where fiber failure is dictated by a critical crack 
opening. Each curve represents the resultant steady- 
state traction profile for a given crack speed. The 
bridging zone size depends on the steady-state crack 
velocity and the fiber failure criterion used. For 
higher crack speeds, the bridging traction profile 
approaches the distribution for the rate-independent 
case. The fibers are exposed to creep for shorter times 
and accumulate negligible creep strain, so that the 
bridging tractions have not relaxed much. The 
bridging stress profiles near the rate-independent 
limit show a significant stress concentration at the 
end of the bridging zone. At lower velocities, 
preferential creep relaxation where the fiber stress is 
highest attenuates this effect. 

Bridging traction distributions for several crack 
speeds are shown in Fig. 3(b) for the case where a 
critical fiber strain governs fiber failure. The curves 
are similar in shape to the critical opening case, but 
now, as crack speed increases, the steady-state bridge 
length increases as well, as opposed to the critical 
opening case, where bridge lengths decrease with 
increasing velocity. This difference in bridge length 
dependence on crack velocity for the two cases is 
further discussed in Sections 3.5-3.6.  It can be 

Bridging law: S = 2Xa[Ö + ß<J] 

Position along crack —■ 

Fig. 3(a). Steady-state bridging stress distributions where 
fiber failure is governed by a critical opening for five 

different crack velocities. 
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Fig. 3(b). Steady-state bridging stress distributions where 
fiber failure is governed by a critical fiber strain for five 

different crack velocities. 

explained most easily by considering the asymptotic 
behavior of the system, which is analysed in 
Section 4. 

As a result of the constant crack velocity 
assumption, the amount of time the fibers bridging 
the crack undergo creep is linear with distance from 
the crack tip. Thus, the bridging traction profiles 
shown in Fig. 3(a) and (b) also represent the stress 
history of a given fiber as the crack sweeps by; the 
distance from the crack tip can be reinterpreted as the 
time a fiber has been exposed to creep. As a fiber first 
enters the crack, it is quickly loaded and responds 
elastically; as the crack sweeps past, the fiber creeps 
and the bridging traction relaxes. When the fiber has 
almost reached the end of its life, the bridging 
traction due to the fiber rises because of the stress 
concentration at the end of the bridging zone. 

The curves shown in Fig. 3(a) and (b) are 
qualitatively consistent with those compiled by 
Begley, Cox and McMeeking [10] for non-steady- 
state conditions. Both their work and the results 
presented here show the same characteristic peak in 
the bridging stress near the crack tip. However, 
comparison should not be taken too far. The results 
of Begley et al. [10] were generated for the case of a 
center crack under constant load, whereas the results 
presented here are for a semi-infinite crack with a 
constant applied stress intensity factor. 

3.2. Fiber strain distributions 

Several fiber strain distributions are shown in Fig. 
4(a) and (b) for the case of equal matrix and fiber 
elastic moduli and a fiber volume fraction of 0.3. 
These curves were calculated using equation (10) and 
represent the strain in the fibers at the matrix crack 
plane. The solid lines are the total strain in the fibers 
as a function of distance from the crack tip, while the 
dashed lines show the creep strain contribution for 
each case. The elastic contribution to strain is thus 
the difference between the two curves. Since the 
curves in Fig. 4 were taken from results generated by 
assuming a critical failure strain, the maximum strain 
(which occurs at the end of the bridging zone) is the 

10 12 

Distance from crack tip - — 

Fig. 4(a). Steady-state total fiber strain and creep strain 
distributions where fiber failure is governed by a critical 

fiber strain for five different crack velocities. 

same for each profile. In contrast, the fiber strain at 
the end of the bridging zone is different in Fig. 4(b) 
for each case, as fiber failure is governed by a critical 
opening. 

The curves in Fig. 4 for a crack velocity of v„ = 0.1 
illustrate that at low speeds, nearly all of the strain 
in the fibers is achieved via creep. As the crack 
velocity is increased, the amount of time during 
which the fibers undergo creep decreases significantly, 
and the elastic contribution to the strain increases. 
The curves also illustrate that bridging lengths will 
either decrease or increase with crack velocity, 
depending on the fiber failure criterion. This behavior 
was evident in Fig. 3(a) and (b) and is discussed in 
detail in subsequent sections. 

The strain profiles have no simple connection to 
the crack opening profiles; the crack opening files 
corresponding to the cases shown in Fig. 4(a) and (b) 
must be calculated via equation (17) using the 
bridging traction profile that results from the solution 
of equation (14). 

3.3. Crack velocity as a function of applied stress 
intensity factor 

The steady-state crack velocity is shown in Fig. 5 
as a function of applied stress intensity factor for 
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Fig. 4(b). Steady-state total fiber strain and creep strain 
distributions when fiber failure is governed by a critical 

opening for five different crack velocities. 
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E<,= V2Ö 

^=^=20 

Applied stress intensity factor K = ■—■ 

Fig. 5. Steady-state crack velocity as a function of applied 
stress intensity factor for four values of the two fiber failure 

criteria. 

criterion of critical opening and the dashed lines to 
the criterion of critical fiber strain. For both cases, as 
the applied stress intensity factor is increased above 
the effective matrix toughness, the crack velocity 
increases rapidly. Decreasing the critical value 
governing fiber failure for either criterion will 
increase the steady-state crack velocity for a given 
applied stress intensity factor. The general trend of 
these curves is easily explained; as the crack velocity 
increases, the relaxation of bridging tractions 
decreases and higher loads are needed to overcome 
the more effective bridging. 

In these plots, K„ = 1 (i.e. Kx = IQ represents a 
lower threshold for crack growth. At zero velocity, 
creep completely relaxes the bridging tractions and 
crack growth occurs at the toughness of the 
monolithic matrix material adjusted for the volume 
fraction of the fibers. 

There is also an upper threshold on the applied 
stress intensity factor. At high velocities, creep in the 
fibers is negligible and the system responds in a 
rate-independent manner. In this limit only, the 
critical opening displacement and strain criteria 
[equations (10b) and (10c)] are related simply by 
fcr = VA"- Furthermore, for the rate-independent 
limit, there exists a critical applied stress intensity 
factor that causes unstable matrix cracking. Its value 
can be found analytically by applying the J-integral 
along a path at the crack faces and equating it to the 
J-integral taken in the far field, thus relating Ka to an 
integral of the rate-independent bridging law [29, 30]. 
The result is the following expression for the critical 
applied stress intensity factor as the crack velocity 
approaches infinity: 

= ./|A*+l 

§4+1 

The curves in Fig. 5 illustrate this upper limit and the 
concurrence of the two criteria when ecr = N/A^ as 
Vss -* CO. 

3.4. Bridging length behavior for the critical crack 
opening criterion 

The bridging length as a function of crack speed is 
shown in Fig. 6 for the critical opening criteria. The 
curves show that the maximum bridge length is 
obtained as vss -* 0, and that larger critical openings 
always result in larger bridge lengths for a given crack 
velocity. The minimum bridge length is apparently 
not achieved as the crack velocity tends towards 
infinity; the numerical results show a shallow 
minimum in the bridge length at a finite crack 
velocity. 

The bridge length for zero velocity corresponds to 
the location where the crack opening for an 
unbridged crack equals the critical opening. In the 
limit when the crack speed goes to zero, the bridging 
tractions are completely relaxed via creep and the 
crack opening profile is merely that of an unbridged 
crack. As the crack speed tends towards infinity, the 
system responds nearly rate-independently and the 
resulting bridge length is the same as the length that 
would result from rate-independent bridging analy- 
sis. 

The schematic of Fig. 7 shows why the bridge 
length must be smaller in the limit of infinite velocity 
than it is for zero velocity for the critical crack 
opening criterion. The crack profile at zero velocity 
tends towards a parabola whose curvature at the 
crack tip is consistent with Küp = Kc. The bridge 
length is determined by the intersection of this 
parabola with the ordinate S = <5cr. At very high 
velocity, the profile must approach this 
same parabola near the crack tip; but in the far 
wake of the crack, it must approach a parabola 
whose curvature is consistent with K„. Since Ka> Kc 
at any velocity greater than  zero, the far-wake 

""■■' ■ ■■"■■" ' ■ ■' ■ ■< 

100 0.OO01      0.001     0.01 0.1 1 

Crack Velocity vs = 

10 

■ = */£,; yss -»• oo.   (21) Fig. 6. Bridge length as a function of steady-state crack 
velocity for critical crack opening fiber failure criterion. 
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Fig. 7. Schematics of limiting crack profiles at zero and very 
large crack velocities, with bridging zones marked off for 

critical opening criterion. 

limiting profile must lie above the near-tip limiting 
profile. The high velocity profile must take on a 
shape similar to that shown in Fig. 7. Its intersection 
with the ordinate ö = <5cr must define a shorter bridge 
zone. 

There is no plot corresponding to Fig. 7 for the 
critical strain criterion. The utility of Fig. 7 derives 
from the existence of an easily analysed crack 
configuration that is asymptotically independent of 
velocity. In the critical strain case, the crack profile 
has no such limit. The profile behaves according to 
the asymptotic results derived in Section 4. 

3.5. Bridging length behavior of the critical fiber strain 
criterion 

The relationship between bridge length and 
steady-state crack velocity is illustrated in Fig. 8 for 
eight different critical strains. The elastic moduli of 
the matrix and fibers were assumed to be the same, 
and the fiber volume fraction used was /= 0.3. 
Varying the fiber volume fraction and the ratio of 
elastic moduli does not qualitatively change the 
results. 

ai- 

g 

Fig. 

Crack velodty vB = -|j- 

8. Bridge length as a function of steady-state crack 
velocity for critical strain fiber failure criterion. 

For critical strains <10 (e.g. £, = ,/2Ö, J\l, 
y/lÖ, and y/s in Fig. 8), the bridging length 
asymptotes to values only a few times greater than 1 
as the crack velocity increases. As for the critical 
opening criterion, as the crack velocity increases, 
crack growth is governed by the rate-independent 
limit. The strains in the fibers at the notch for the 
rate-independent case are relatively small, however, 
and significantly higher loads and bridge lengths are 
required to satisfy higher critical strains. Thus, when 
larger critical values (ü, ^ 10) are used, the bridge 
lengths become exceedingly large as the crack velocity 
increases. For values typical of ceramic matrix 
composites, these longer bridge lengths are of the 
order of tens of millimeters. Accurate numerical 
results are difficult for these cases, as the significantly 
longer bridge lengths require a large number of grid 
points in the discretization of the bridging traction 
profile; and numerical instabilities set in when a»/ 
[26,31]. Therefore, calculations were limited to the 
range shown in Fig. 8. 

Figures 6 and 8 show very different bridging 
lengths for the two fiber failure criteria. When critical 
openings are used, the bridging length decreases with 
increasing crack velocity, whereas the opposite trend 
is observed for the case of a critical fiber strain. The 
bridging length behavior for the two cases can be 
directly compared by noting that the critical strain 
values in Fig. 8 and the critical opening values in 
Fig. 6 were chosen to give coincident crack 
configurations in the high velocity limit. Consider, for 
example, the curve for Acr = 10 in Fig. 6 and the curve 
for £„ = yiÖ in Fig. 8. The bridging length 
dependence on velocity for the critical strain case and 
the connection between bridging lengths and bridging 
stress magnitudes can best be explained by consider- 
ing the asymptotic behavior for low velocities, 
presented in the next section. 

4. ASYMPTOTIC    LIMITS    FOR    SLOW    CRACK 
GROWTH 

4.1. Asymptotic result for the bridging stress profile 

When crack growth is very slow, creep in the fibers 
has significant time to relax the bridging tractions, 
resulting in a crack opening profile that is not much 
different from the parabolic opening due to the 
applied load: 

where 

ö(x) « njx 

EyFht 

(22) 

(23) 

This expression can be combined with the steady- 
state crack opening profile predicted by the bridging 
law [expression (1)] to formulate the following 
differential equation for the bridging stress profile: 
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(24) 

2905 

^ 
where y = a1. 

The solution to equation (24) yields the bridging 
stress profile at very slow crack speeds: 

«*>-[*£(£ 
1/2 

xe-^erfiiY^x 
1/2 

(25) 

where erfi(x) is the imaginary error function, defined 
by 

erfi(x) = — ierf(bc). (26) 

Using the normalizations presented in Section 2.3 
and equation (23) to eliminate n, the normalized 
bridging stress profile will be 

2W = £P=(4      Vi 1/4 

x e-^Werfi MT- (27) 

This asymptotic form of the bridging stress profile 
can be used to predict the system behavior at very low 
crack speeds. The profiles predicted by equation (27) 
have been superimposed on the numerical results in 
Fig. 3(a) for the two lowest velocities. The agreement 
between the numerical results and the asymptotic 
prediction improves with decreasing velocity. 

4.2. Asymptotic behavior of the bridged zone very near 
the crack tip 

The bridging stress profile very near the crack tip 
can be examined by noting that at small values of x, 
the exponential term in equation (27) goes to unity 
and the imaginary error function can be approxi- 
mated by the first term in a series expansion in Xiß 

[32]. The normalized bridging stress profile very near 
the crack tip is then given by 

-— Creep strain 

— Total strain 

0.1     1       3 

E, = E„ = EL = E 

f = 0.3 

Distance from crack tip —£_ 

Fig. 9. Fiber strain distributions for critical strain fiber 
failure criterion shown on a log-log scale. 

tip, the total strain is dominated by the elastic 
contribution, leading to I oc X", which can also be 
seen in Fig. 9. 

4.3. Asymptotic dependence of the applied stress 
intensity factor and the bridge length on crack velocity 

When the steady-state crack velocity va = ä/ßl«l, 
equation (27) can be approximated by [24] 

HX) * fe)1 2U -»1. (30) 

The   corresponding   strain   profile   results   from 
combining equation (30) with equation (20): 

w-|{w(ä 

MWi-^ 
Under the condition X/vss» 1, the second term (creep 
strain) dominates equation (31), allowing the strain 
profile to be approximated as 

C{X): 
4(1 -f)E, -f)EmE/l\ 

3£f£L      [v*/ 

1/2 y 

(2X)»<   ^»1. (32) 

Z(JTh jfi/4   f0r   ^.«i. (28) 

This expression can be used with equation (20) to 
predict the normalized strain distribution: 

™*w+£- -f)EEm 

EtEL F* (29) 

where the first term on the right-hand side represents 
elastic fiber strain and the second creep strain. Thus 
the creep strain is asymptotically linear in x and, since 
it varies as e;3'4, it dominates the total strain for very 
low crack velocities. These trends are borne out in the 
log-log plot of Fig. 9. Extremely close to the crack 

Equation (30) can be used with equation (19) to 
predict the asymptotic dependence of the applied 
stress intensity factor on the steady-state crack 
velocity. The bridging length in the resulting equation 
is removed by applying the fiber failure criterion via 
equation (10b) or (10c). For the case of a critical 
opening, the asymptotic limit for the applied stress 
intensity factor is given by 

t) /as 

1+2^(ä"2^"2 <*■-<*>■ w 

The asymptotic dependence of the normalized bridge 
length for the case of a critical opening is obtained 
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directly from evaluating equation (22) at x = a: velocity assumption, 

32 U 
i \ 

(v„ -* 0). (34) 

Here the bridging length is independent of u« for 
small p„, which is confirmed by the shape of the full 
solutions in Fig. 6. The quadratic dependence on c5cr 

reflects the limiting parabolic crack opening. 
For the case where fiber failure is governed by a 

critical strain, the asymptotic limit for the applied 
stress intensity factor can be derived using equation 
(30) in conjunction with equations (19) and (32), 
resulting in 

/ asym 

3E,EL 

4(1 -/)£. (^'W 

x(c«-»0).   (35) 

For the same criterion, the asymptotic variation of 
the bridge length can be found by evaluating equation 
(32) at x = a and inverting: 

3£L 

4(1 -/)£n (fefW (36) 

Thus the bridge length will go to zero as the crack 
velocity approaches zero, in contrast to the behavior 
in the critical opening case. These results can be used 
to check the numerical results given in Figs 5 and 6 
for the case of small velocities. The numerical results 
for the bridging length vs velocity for the critical 
strain case are re-plotted on a log-log scale in Fig. 10 
to highlight the power-law dependence. The slope of 
the lines is 2/3 at low t>„, in agreement with equation 
(36). 

Further insight into why the bridging lengths 
decrease with decreasing velocity for the critical 
strain case follows from considering the length of 
time, /„, for which the fiber at the end of the bridging 
zone is exposed to creep. From the steady-state 
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Fig. 10. Bridge length as a function of steady-state crack 
velocity for critical strain fiber failure criterion shown on a 

log-log scale. 

f. = ■ (37) 

Combining this with the asymptotic result (36) for the 
bridge length gives 

t. = - 
1/1 3ELüt 

4V»J   l4(l-/)£„ 

Therefore, as the crack velocity approaches zero, the 
amount of time during which the last surviving fiber 
is exposed to creep goes to infinity. Even though the 
bridging stress applied by the fiber decreases with 
velocity as well, the decrease in bridging traction due 
to slower velocities is not nearly as sensitive to crack 
speeds. The bridging length will therefore tend to zero 
as the crack speed decreases. 

The shorter bridging lengths in the critical strain 
case (for a given crack speed) do not necessarily imply 
larger bridging tractions than in the critical opening 
case, as the applied stress intensity factor for the 
critical strain case will be lower as well. To fully 
understand the interplay between shorter bridging 
lengths, crack tip stress intensity factors, and bridging 
lengths, the asymptotic relations given by equations 
(33)—(38) must be examined critically. 

5. DISCUSSION 

5.1. Implications of a finite stress intensity factor at 
the crack tip 

The trends in bridging length behavior are 
qualitatively similar to those presented for craze 
growth in polymers. The work of Knauss and Losi 
[11, 12] illustrates that when fibril failure is governed 
by a critical strain, bridging lengths decrease with 
decreasing velocity. The critical opening case is 
similar to the results of Fager et a!. [13], showing 
decreasing bridge length with increasing velocity. In 
general for both criteria, the craze literature reports 
the same trends of increasing velocity with increasing 
applied stress intensity factor. 

While the general trends are similar, the assump- 
tion of a finite stress intensity factor at the matrix 
crack tip results in significant differences at low 
velocities. When Küv = 0, the crack profile must be 
cuspoidal. When Klip # 0, it is asymptotically 
parabolic. The algebraic relationship between applied 
stress intensity factor and the crack velocity found 
here is therefore peculiar to the problem of a crack 
in an elastic matrix. 

And, of course, the lower threshold on K*, namely 
K* = IQ (see Fig. 5), does not exist unless a finite 
stress intensity factor occurs at the matrix crack tip. 
For CMCs where the matrix is elastic, there exists a 
threshold in the applied loading below which crack 
growth will not occur: this is the applied stress 
intensity factor which is equal to the matrix 
toughness adjusted for the fiber volume fraction. 
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5.2. Influence of the assumed form of the bridging law 

At very high velocities there are significant 
differences as well. In general, the cohesive zone 
analyses of the craze literature predict a power-law 
relationship between the crack velocity and the 
applied stress intensity factor at high velocities [14]. 
This is a result of the assumed form of the bridging 
law, a power-law dependence of crack opening rate 
on the bridging stress. Such behavior predicts no 
upper limit on the applied stress intensity factor. In 
contrast, the bridging law used here has a 
rate-independent component that dominates at high 
velocities as creep effects become negligible. Thus, 
one of the attractive features of the work presented 
here is that a connection is made with previous 
analyses for rate-independent CMCs. The phenom- 
enon of instantaneous matrix cracking above a 
critical applied load is predicted by using a bridging 
law that is still valid in regimes where creep effects are 
negligible. 

5.3. Pertinence of small scale bridging conditions 

Whatever the expected length of the zone of intact 
bridging fibers, it is possible in principle to satisfy the 
conditions of small scale bridging in a large enough 
specimen with a large enough notch. But in practice 
small scale bridging will be most easily achieved if the 
bridging zone is very small. Thus the ease of 
preparing specimens for studying the small scale 
bridging limit depends on the prevailing fiber failure 
criterion: only in materials in which fiber failure 
occurs at a critical strain can arbitrarily small 
bridging zones be obtained (Fig. 8). For these 
materials, small scale bridging should always be 
obtainable simply by going to lower applied stresses. 

This is indeed likely to be the usual case. The 
critical fiber strain criterion is the more physically 
reasonable, as discussed in the following section. 

5.4. Appropriateness of fiber failure criteria 

When materials with creeping ceramic fibers are 
considered, the critical fiber strain criterion is clearly 
the more relevant of the two criteria used here. While 
the critical opening criterion has no obvious direct 
physical basis for the case of creeping ceramic fibers, 
it has been used previously as a bridging failure 
criterion and may be relevant to other material 
systems. Additionally, the total crack opening is a 
parameter that may be easier to measure experimen- 
tally than fiber strain, which would be particularly 
difficult to quantify on a fiber-by-fiber basis. 

The critical strain for fiber failure could be based 
on creep rupture data taken directly from creep tests 
performed on bare fibers and thus related to the creep 
ductility of the fibers. For typical SiC/SiC composite 
near 1200°C, a strain of 1% translates into the 
normalized value e„ = 52. Therefore, higher values 
for £c, than those shown in Fig. 5 are also of interest. 
For critical strains near or above 1%, the applied 

stress intensity factor must be very high to generate 
elastic strains at the notch of the requisite magnitude. 
In this regime, the bridge lengths become very large. 

The fiber failure criterion could alternatively have 
been based on a critical value of creep strain rather 
than total strain. At low velocities, where the creep 
strains dominate, this would make negligible 
difference. At higher velocities, the results would be 
significantly different, since the creep contribution to 
fiber strain disappears as the time fibers are exposed 
to creep goes to zero. Choosing a critical creep strain 
implies that the bridge lengths would be enormous at 
high velocities, as longer and longer bridge lengths 
would be necessary to expose the fibers to creep to 
achieve sufficient creep strains. In the limit of 
rate-independent cracking (i.e. uss -* oo), bridge 
lengths would go to infinity. The small scale bridging 
assumption implied by the steady-state analysis 
presented here would not then be satisfied. 

Because of the qualitatively different trends in 
bridging length for different failure criteria, exper- 
imental measurements of bridging zone length vs 
crack speed (i.e. applied stress intensity factor) would 
be useful in empirical discrimination of the models. 

It is plausible that a fiber failure criterion based on 
stress would be more realistic in some regimes, either 
a temperature-dependent fiber strength or a fracture 
stress based on a characteristic flaw size in the fibers. 
The traction profiles of Fig. 3 suggest possible 
instability in this case. There are two crack locations 
at which the stress exhibits a local maximum, one at 
the trailing edge of the bridging zone and one behind 
the crack tip. If failure can occur behind the crack tip, 
it is feasible that steady-state propagation would give 
way to a pulsing or stick-slip motion, involving 
alternation between states with long and short 
bridging zones. Further calculations appear war- 
ranted to pursue this curiosity. 

Lastly, it should be pointed out that in some cases, 
oxidation will play an important role in the fiber 
failure mechanism. In these situations, the amount of 
time during which the fibers are exposed to oxidation 
(i.e. when the fibers are in the crack wake) will 
influence the lifetime of the fiber. While assuming a 
critical time to failure of the fibers would be attractive 
due to its simplicitly, it fails to account for the stress 
dependence of the oxidation failure mechanism. The 
coupled stress-time dependence of fiber failure 
presents significant difficulties and was not con- 
sidered here. 

6. SUMMARY 

Crack growth has been predicted for regimes where 
bridging lengths are small compared to total crack 
lengths. Using two different fiber failure criteria to 
establish the steady-state bridge length, crack 
velocities are shown to increase as the applied stress 
intensity factor is increased. When fiber failure is 
governed by a critical crack opening, bridge lengths 
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decrease with increasing velocity; assuming a critical 
total fiber strain results in an opposite trend. 
Asymptotic results are given (and verified by 
numerical calculations) for regimes of very slow crack 
growth. Very different behavior from similar analyses 
for polymers is predicted as a result of a non-zero 
stress intensity factor at the matrix crack tip and a 
bridging law which accounts for frictional sliding. 
Small scale bridging conditions in experiments should 
be expected at low stresses when fiber failure is 
governed by a critical strain criterion. 
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APPENDIX 1 

Nomenclature 

Young's   modulus   of  fibers   and 
matrix, respectively 
Rule of mixtures composite Young's 
modulus 
composite modulus which accounts 
for orthotropy 
fiber volume fraction 
fiber diameter 
creep coefficient of fibers 
modified  creep  coefficient  of the 
fibers 
shear sliding stress at fiber-matrix 
interface 
bridging stress, bridging stress rate 
total crack opening, total crack 
opening rate 
rate-independent bridging co- 
efficient (|5 = A<7!) 
characteristic   relaxation   time   of 
intact composite 
steady-state crack velocity 
critical  stress intensity factor for 
matrix crack extension 
far-field applied stress intensity fac- 
tor 
length of bridged region of matrix 
crack 
critical total strain needed to rupture 
fibers 

steady-state matrix cracking stress 

characteristic length scale for com- 
posite 
total crack opening at steady-state 
matrix cracking stress (for the 
rate-independent case) 

normalized bridging stress 

normalized total crack opening 
normalized      steady-state     crack 
velocity 

El,  Em 

£L =fE, + (1 -/)£„ 

E 

f 
D 
B 
o _     BEiEi 
p ~ 2(1 -/)£„ 

A = 

T = 

a 

D(\ -ffEj 
4f~tE,El 

EL 
(1 -f)BE,E. 

-B \\2fxEfElKi 
■ ~   D(\ -f)Ek <7m 

/ = (XEK:)2'2 = XEo« 

<5n* = Aci 

A = 

X£a q_ 
I Omc 

\&&    h 

a_ 
ßl 
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/Coo — 

e« = 

t=- 

Act 

(JsToo)as 

A£JSToo _ K&       normalized applied stress intensity 
/    ~ Kc        factor 

/ strain in uncracked, non-creeping 
IE composite  loaded  to   steady-state 

matrix cracking stress 
- normalized total fiber strain at crack 
ss plane 

normalized critical total strain to 
fiber failure 
normalized critical total opening to 
fiber failure 
asymptotic applied stress intensity 
factor at low crack speeds 
asymptotic  bridge  length  at  low 
crack speeds 
time during which fiber at end of 
bridging zone is exposed to creep 

APPENDIX 2 

Details of the bridging law 

The bridging law derivation [9,10] is based on a cell 
model similar to the elastic case [20,21,33]. The fibers are 
assumed to creep linearly, according to 

£r = -§ + Bo, (A2.1) 

where i, is the axial strain rate of the fiber, E, is the Young's 
modulus of the fibers, and dt and o, are the axial stress rate 
and stress, respectively, applied to the fiber. B is the creep 
coefficient of the fibers. (Creep data for SiC fibers can be 
found in Refs [34] and [35].) 

The relationship between the crack opening rate and the 
stress and stress rate applied to the cell model is given by 

•5(0 = 
(1 -fYElD 

2ftE, 

'ö(t)        BErc(t) 
2(1 -/)£„ 

<7(?)e-"-"rd? 

\+/Z,(fE, -(!-/)£„) 
•EL 

Ta(t)e °'rd?-l (A2.2) 

where 5(t) is the total opening rate of the matrix cracks as 
a function of time t; a(t) and &(t) are the stress and stress 
rate, respectively, applied to the cell model; Ea and 
EL =fEt + (1 —f)Em are the matrix Young's modulus and 
the composite Young's modulus, respectively, x is the shear 
sliding stress between the fibers and the matrix; D is the 
diameter of the fibers; and/is the fiber volume fraction. The 
characteristic relaxation time, T, for the intact material is 
given by 

r= (1 -f)BE,Em 
(A2.3) 

The exponential terms in the bridging law given as 
equation (A2.2) result from the creep behavior of the 
composite material. The relaxation time 2" is the same as the 
value derived in McLean's model [36] for an intact material 
where the fibers creep linearly and the matrix is elastic. 

In most situations, the term 

_22L 
To(t) e-e-wdr-l (A2.4) 

is less than unity; additionally, for many materials the term 
fE,(fE,-(\ -f)Em)IEa)IEi is negligible. The product of 
these two can therefore reasonably be neglected, signifi- 
cantly simplifying the bridging law. If the times considered 
are much smaller than the characteristic time T, the first 
convolution in equation (A2.2) can be neglected as well. 
With neglect of the first convolution and the term containing 
equation (A2.4), the bridging law simplifies to 

,5« = 2l0(t){ö(f) + ßa(t)] 

where ß is a modified creep coefficient, given as 

„ _    BEiEi 
p ~ 2(1 -/)£„ 

(A2.5) 

(A2.6) 

and X is the bridging law coefficient for the rate-independent 
case (such that ß = 0) where 8 = A<r2 [20,21]: 

,     D(\-fYEl 
/_     4T/#     ■ (A2.7) 
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Abstract 

The tensile strength of an aligned-fiber ceramic composite containing an initial, through- 
the-fibers flaw is examined, and comparative studies are made of the effects of long fibers 
having deterministic tensile strengths, long fibers with stochastic strengths, and short 
fibers. Long-fiber reinforcement by perfectly uniform fibers having deterministic strengths 
has already been investigated extensively, and early studies of the effects of statistical 
variations in fiber strength associated with random fiber flaws (Tbouless and Evans, 1988; 
Sutcu, 1989) indicated that long fibers having stochastic strengths could, paradoxically, 
provide significantly higher composite notch strengths than comparable fibers having 
uniform tensile strengths. The essential reason for this is that the randomly flawed fibers 
can suffer breaks in the interior of the composite, and then continue to carry load as well 
as enhance energy dissipation as they are pulled out of the matrix. A similar pullout 
effect can be induced by use of sufficiently short fibers, even when their strength is 
deterministic (Budiansky and Cui, 1995). 

The influences on composite strength of these various fiber types are revisited and 
reviewed here. Particular attention is given to the question of "notch-sensitivity", which 
in the present context means the effect of the length of a major crack-like flaw on the 
overall composite strength. 

1.  Introduction 

The configuration shown in Figure 1 illustrates a 2D model problem for the assessment 
of notch sensitivity. An infinite aligned-fiber composite containing a through-the-fibers 
flaw (or "notch") of length 2ao is subjected to uniform tension o at infinity. The fibers 
of radius R have volume concentration Cf and are held in the matrix by an interface friction 
of maximum magnitude T. We assume further a matrix fracture toughness Km=0; this 
simplifying assumption (Suo et al , 1993) introduces little error (Budiansky and Cui, 
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1994). Figure 1 shows long fibers, but a similar picture, and the same notation and 
assumptions will be used for aligned, but randomly located short fibers having uniform 
lengths. 

In the analysis of the strength of the 
notched composite, some additional 
simplifications will be made. We will 
assume that an isolated matrix crack 
aligned with the initial flaw will emanate 
from each flaw tip (Figure 1) when load is 
applied to the composite. In actuality, fiber 
composites suffer multiple, closely spaced 
matrix cracks, with a concentrated density 
of such cracks near the notch tips. Like 
crack-tip plasticity in metals, such 
localized matrix cracks tend to relieve fiber 
stress concentration at the flaw tips, and so 
ignoring them makes the calculations of Figure 1. Flawed composite, 
the composite strength conservative. Finally, we will be using an idealized bridging 
model, wherein the forces applied to the composite by fibers that bridge the matrix crack 
will be modeled via distributed spring stresses applied to the matrix crack faces, rather 
than by distributed friction along the fibers in a boundary layer in the interior of the 
composite. This too tends to concentrate flaw-tip stresses unrealistically, leading to 
conservative strength estimates, as shown in the "large-scale sliding" study by Xia et al 
(1994). Nevertheless, comparisons of the relative effectiveness of various kind of fibers 
may remain approximately valid, and the simplified analyses can be expected to provide 
lower bounds to the strength of the composite in the presence of a notch. 

We will denote the strength of the composite by os, and let o0 be the strength of the 
unflawed (but matrix-cracked) composite. Then the knockdown factor os/a0 is a measure 
of the notch sensitivity. 

2.  Long Fibers, Deterministic Fiber Strength 

The pertinent results found by Budiansky and 
Cui (1994) will be summarized. Figure 2 
illustrates the bridging model in which the 
crack-face fiber stresses Of were smeared out 
into bridging stresses p=CfOf related by a 
bridging law to the crack-face opening 
displacement 8. We define the characteristic 
length 

L = RS/x (1) 
where S is the fiber strength, and introduce 
the parameter TTTTTTTT 

Figure 2.  Crack-face spring bridging. 
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A(S) = 
^Cjjjfcjjj w (2) 

where Ef, Em, and E are the fiber, matrix, and composite moduli, and Cni=l-Cf is the 
matrix volume fraction. In terms of the non-dimensional crack opening defined by 

w = 8A2(8/L) 
the bridging relation 

"%-* 
was used.   (See Xia et al (1994) and Budiansky et al (1995) for discussions of the 
provenance and limitations of this bridging law.)    The criterion for fiber failure is f=l, 
and when this occurs at the ends of the original flaw, failure of the composite ensues. 

Because Km=0, the matrix cracks will extend out to infinity. With £=x/ao 

(3) 

(4) 

*-*(TI?) f(t)log 

2-e 
t2-i 

■it. (5) 

governs the distribution f(q) of the non-dimensional bridging stress. Here, via (4), w=f2, 
and with v equal to the Poisson's ratio of the composite, the parameter co is defined as 

Here A=0(1) is a parameter that accounts for the orthotropy of the composite (Budiansky 
and Cui, 1994). Overall equilibrium requires the imposition of the auxiliary condition 

£"[«$)-f(~)]dq = f(-). (7) 
With Oo=CfS, the results for the strength ratio os/oo vs. ©ao/L shown in Figure 3 were 
found by setting f(l)=w(l)=l, solving (5) and (7) for f(§), and identifying os/o0 with f(~). 

* 

Figure 3.   Notch sensitivity, deterministic fiber strength. 
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(We omit the details of the numerical solution.) 
For an SiC/CAS composite, the nominal values R=7 \im, S=2 GPa, and T=20 MPa 

give the characterisüc length L=700 urn. For Cf=.4, Ef=200 GPa, and Em=100 GPa, we 
nave E = cf Ef + cmEm= 140 GPa, and the values v=.25 and A=.97 (Budiansky and Cui, 
1994) give to = 1.5. The consequent theoretical notch sensitivity as a function of the 
half-crack-size ao in millimeters, illustrated in Figure 4, is alarming; but in fact, the 
experiments by Cady et al (1995) on a notched, 0/90 SiC/CAS composite laminate 
exhibited essentially no notch sensitivity. 

.8 

b 

b 

.6 

A 

0 .5 1 1.5 2 
a0    (mm) 

Figure 4.    Notch sensitivity, deterministic fibers; example (SiC/CAS). 

3.    Long Fibers, Stochastic Fiber Strengths 

We turn now to consideration of the effect on notch sensitivity of fibers having strengths 
governed by a Weibull strength distribution. Suppose that the occurrence of inherent 
flaws in a long fiber obeys a Poisson distribution specified by the probability N[S]dx that 
the tensile strength of any element dx along the fiber is less than S. The Weibull 
assumption is that N[S] is proportional to some power Sm. A useful formulation of this 
law is 

Nia-I r(l + l/m)S 

SL 

(8) 

where SL is the average strength of fibers of length L, and T is the gamma function. We 
illustrate the significance of the size of the Weibull parameter m in Figure 5, which 
shows the probability-density function q(S/SiJ for the strength ratio S/SL of fibers of 
length L. The values of m shown more-or-less cover the range that has been reported for 
various fibers. For m==» the fiber strength is deterministic, with S=SL; m's less than 2 
are unlikely. The validity of Eq. (8) would imply that LS™ is invariant, and that the 
curves in Figure 5 are independent of L. (But experiments by Zok et al (1993) indicate 
that a simple Weibull distribution does not really account adequately for the presence of 
the distinct fiber flaw populations associated with pristine fibers and those introduced 
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q(S/SL) 

during composite processing.) 
The effective single-matrix-crack bridging law associated with fibers having Weibull 

strength distributions was studied by Thouless and Evans (1989), and has been 
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Figure 5.   Fiber-strength probability densities for several Weibull exponents. 

rederived, with corrections, by Budiansky and Amazigo (to be published). We define the 
new characteristic length L and the stress SL by stipulating that the relation 

L = SLR/T (9) 
be satisfied by fibers of length L and their average strength SL; and we keep the definition 
(2) for the parameter A, with S replaced by SL. Then, with w still defined by Eq. (3), the 
bridging law (4) generalizes into the form 

/•Vw 

m=1 0   / 

4, 
2^ 

*s 

—— = f(w;m,A)= Vwe a° cfSL w 
4Ä7 

ame -a„s" s-- 
w 

4Ä2 

-im+1 

ds   (10) 

for w< 16A4; for w> 16A4 the integral is dropped.  Here am is just the constant 

n       [r(l + l/m)]m 

ttm=        m + 1       • <») 
(If the average strength Sg is known for a standard gage length Lg of fibers, then L and ST 
may be found from the formulas 

SgR m+1 

S 
fsg.O 

g   vTLg; 

m+l 
(12) 

that follow from Eq. (9) and the connection LS™ = LJS?.) 
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Figure 6.   Bridging law, stochastic fiber strength; m=4, A(SL)=10. 

The bridging law (9) can be evaluated by numerical integration, and an example is 
shown in Figure 6, for m=4 and A(StJ=10. Typically, in contrast to the deterministic 
law (4), which confines w to the narrow range (0,1), the curve for stochastic fibers is 
considerably more broad in its early stage, and then transitions to a very long, low, 
gradually falling portion. 

The integral equation (5) and the auxiliary relation (7) continue to apply to the model 
problem, with w given in terms of f=p/(CfS?J by numerical inversion of the bridging 
relation. But the strength os is now set by the maximum value achieved by the applied 
stress o during opening of the matrix crack. The normalizing value GQ for the strength of 
the unnotched composite is identified with the peak value of p (Figure 6) in the bridging 
law. The maximum values of p/(cfSL> are nearly independent of A, and decrease from 
unity only a little as m decreases. (For m=2 and A=10, [p/(cfSL)]max=-87.) 

b 

b" 

Figure 7.     Notch sensitivity, stochastic fiber strengths; A(SjJ=10 

We show in Figure 7 the non-dimensional results found for notch sensitivity, for 
m=2, 4, 10, and the deterministic case m=°o given in the previous section. For each m, 
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we used A(Si>10. (For m=°° the strength does not depend on A, and additional 
numerical calculations have indicated that the notch strength is not very sensitive to A for 
the small notch sizes that are of interest in the study of notch sensitivity. For each finite 
m, the strength does becomes nearly proportional to A for very long notches.) 

The curves of Figure 7 give a clear indication of the diminished notch sensitivity 
associated with decreasing values of the Weibull exponent. Note, however, that the 
characteristic length L in the non-dimensional abscissa depends on m, as does the 
normalizing value oo for the unnotched composite. An explicit presentation of notch 
sensitivity estimates for SiC/CAS composites is shown in Figure 8, on the following 
basis. We suppose that for a standard gage length of 25.4 mm (1 inch), the measured 
average fiber strength Sg is 2 GPa for each m. With the same choices R=7 pm and T=20 

GPa made earlier for deterministic fibers, we used Eqs. (11) and (12) to calculate the 
characteristic lengths L and associated strengths SL shown in Table I for the several m's. 
Then, with ©=1.5 (for the choices Cf=.4, Ef=200 GPa, and Em=100 GPa used earlier) the 
results in Figure 7 produced the curves of 
Figure 8. (This introduces a small error, Table I 
because A=10 was used for each of the Stochastic fiber parameters 
curves in Figure 7, and the actual values 
of A(SL) for each m, also given in Table 
I, are a little different.) 

The trends exhibited in Figure 8 
confirm the reduced notch sensitivity to 
be expected from composites containing 
fibers having a statistical spread of 
breaking strengths. But some notch sensitivity survives in the millimeter-size notch 
range even for m=2, and so stochastics alone would not account for the Cady et al (1995) 
notch-insensitivity observations in SiC/CAS. Perhaps a combination of stochastic fiber 
strengths, multiple matrix cracking, and the Xia et al (1994) large-scale sliding effect will 
ultimately be needed to understand their notch-insensitivity data. 

m L(mm) SL(GPa) A(SL) 
2 2.3 6.6 6.4 
4 1.4 4.1 8.2 
10 1.0 2.8 9.9 
oo .7 2.0 11.7 

b 

0 .5 1 1.5 2 
o0    (mm) 

Figure 8.    Notch sensitivity, stochastic fiber strengths; example (SiC/CAS). 
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There are several ways to rationalize the decreased notch sensitivity provided by 
stochastic fiber strengths. When weaker fibers break in the interior of the matrix they 
continue to inhibit crack opening as they slide out, allowing the fibers that are stronger 
than average to sustain their bridging constraint. The "softer" bridging law vis-a-vis the 
deterministic one tends to reduce the concentration of fiber stress near the notch. And 
from a related energy viewpoint, there is more dissipation associated with the pullout of 
broken fibers (Kelly and Macmillan 1985). So short fibers that would always pull out 
before they break should lead to less notch sensitivity. This was explored by Budiansky 
and Cui (1995), and is reviewed in the next section. 

4.      Short Fibers 

TTTTTTTTTTTTTl 

Figure 9. Notched short-fiber composite. 

We illustrate in Figure 9 randomly arrayed, 
aligned short fibers, or whiskers, in the 
composite containing an unbridged notch, 
with matrix cracks emanating from the notch 
tips. (Sophisticated, detailed analyses of 
matrix-crack-bridging by randomly inclined 
short fibers have been conducted by Li and his 
associates (e.g. Li et al, 1991), mostly in the 
context of reinforced cementitious materials. 
The emphasis by Budiansky and Cui was on 
the notch-strength implications of aligned 
fibers, and involved  much more primitive 
modeling.) Reverting to the assumption of a deterministic fiber strength S suggests the 
concept of an "optimal" fiber length L=RS/t, as the largest length consistent with 
pullout before fiber fracture, regardless of a bridging fiber location with respect to the 
matrix crack.  Retreating a bit from the modeling of long fibers, we assume that the 
fibers are rigid. If we let e<L/2 denote the length of a particular bridging-fiber segment 
that is being pulled out, then its crack-face fiber stress Of is related to the crack opening 
5 by Of(8;e)=2'r(e-8)/R for 8<e, and vanishes for 8>e. Averaging Of over all e's between 
zero and L/2, and writing p=Cf(Of)aVe gives the optimal-fiber bridging law 

J2p/(cfS) = [l-28/L]2     (0<8<L/2) 
1        =0 (8>L/2) 

The maximum bridging stress is oo=CfS/2, and this is also the reference composite 
strength for vanishing notch size. Now the matrix crack does not have to extend to 
infinity, even though the matrix toughness Km is assumed to vanish; the finite value of 
bridging stress for 8=0+ makes it possible for K to vanish at the tip of a matrix crack of 
finite length (b - ao).  In contrast to Eq. (5), the integral equation 

(13) 

l-Vf(S) = 2efTi(ao/L) 
oo ¥^2 

ß 
f(t)log ¥^?+¥^ 

W1?-^ 
dt 

with ß=b/ao, governs f=p/oo in the range 1 < \ < ß.  Here the parameter r\ is 

2(1- tl = - -v2)CfEf 

AE 
= 0(1) 

(14) 

(15) 

55 



and epS/Ef is the fiber fracture strain. To meet the requirement of zero stress intensity 
factor at the matrix crack tip, the scalar condition 

°0 ¥ UP—r 
must also be satisfied. For specified values of the notch-size parameter efn(ao/L), the 
strength ratio os/oo (Figure 10) was determined as the peak value of c/oo, for increasing 
values of ß, in the numerical solution of (15) and (16) for i{\) and O/OQ. 

b 

2 3 4 

Figure 10.     Notch sensitivity, optimal short fibers. 

Actually, the abscissa in Figure 10 does not depend on S, but the form shown makes 
it easy to see that "optimal" short fibers should generally give less notch sensitivity than 
that given in Figure 3 for deterministic long fibers. The curves look similar, the T| and (0 
parameters are both of order one, and the L parameters for long and short fibers should 
have comparable sizes. But the presence in the short-fiber abscissa of the factor epS/Ef, 
which is around .01, means that for a given notch size ao, the knockdown factor is much 
less for short fibers. But we should remember that the normalizing strength parameter OQ 

is only CfS/2 in the short-fiber case, instead of CfS for long fibers; however, short fibers 
in whisker form tend to have higher nominal strengths. 

We will now finish up by showing an example for a hypothetical CAS matrix 
containing SiC whiskers. We presume an SiC whisker strength S=4 GPa, whisker radius 
R=3 Jim, and keep T=20 MPa as the interface friction; this gives an optimal short-fiber 
length L=600 |im. The value Ef=4 GPa for the whisker modulus gives ep.01, and with 
Cf=.4, Em=100 GPa, we get E=220 GPa, and A=.88 (Budiansky and Cui, 1994) for 
v=.25. These numbers give rj=1.55, and then Figure 10 produces the short-fiber example 
in Figure 11, shown together with the curves reproduced from Figure 8 for stochastic and 
deterministic long fibers. Although various properties of the short and long fibers in this 
comparison differ, they reflect reasonable estimates for whiskers and fabricated fibers. 

In this example, the optimal short fibers provide very comforting notch 
insensitivity, performing much better than even stochastic long fibers with m=2. 
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Figure 11.   Notch sensitivity examples (SiC/CAS); short fibers, stochastic long fibers. 
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Symposium on Applications of Continuum Damage Mechanics to Fatigue and Fracture 

Damage, Fatigue and Failure of Ceramic-Matrix Composites 
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The basic mechanisms related to the degradation of ceramic-matrix composites submitted to 

monotonic and cyclic load histories are matrix cracking, interfacial debonding and sliding, 

interfacial wear and eventually fiber breakage and fiber pull-out These mechanisms are studied 
within the framework of Continuum Damage Mechanics by using results of micromechanical 

analyses. An explicit expression of the Heimholte free energy density is derived in the case of 
monotonic load conditions. In particular, internal variables are carefully chosen to describe the 

degradation mechanisms (e.g., a damage parameter characterizing matrix cracking, another 

modeling fiber breakage) and written in a more appropriate format to allow the derivation of 

constitutive equations applicable to structural calculations. 

In the case of cyclic load histories, the gradual degradation of the interface is described by 

interfacial wear. The constitutive equation is rewritten to incorporate interfacial wear. The effect 

of stress redistribution is analyzed. 

In the case of monotonic and cyclic load histories the failure conditions are written in terms of 

macrocrack initiation conditions. Failure conditions are compared with ultimate tensile strength 

predictions. Fatigue failure conditions are summarized in a map in which three different regimes 

appear depending on the stress amplitude in fatigue. 
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ABSTRACT: Matrix-cracking, interfacial debonding and sliding, fiber breakage and fiber 

pull-out induce loss of stiffness, inelastic strains, hysteresis loops, and crack closure. These 

mechanisms are analyzed within the framework of Continuum Mechanics through the 

introduction of internal variables. Two models which are faithful to the micromechanical analysis 

are studied. They provide guidance on the choice of the relevant internal variables to model the 

mechanical behavior of unidirectional fiber-reinforced composites. Ultimate strength properties 

of fiber-reinforced composites are derived and compared with results related to localization. 

Extensions to cyclic load histories are given and are discussed in terms of ultimate strength 

reached after cycling. 

KEY WORDS: matrix-cracking, debonding, fiber-breakage, interfacial shear strength, 

interfacial wear, ultimate strength, Continuum Damage Mechanics, state potential, internal 

variables, fatigue failure maps. 
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Introduction 

The basic mechanisms related to the degradation of ceramic-matrix composites submitted to 

monotonic and cyclic load histories are matrix cracking, interfacial debonding and sliding, 

interfacial wear and eventually fiber breakage and fiber pull-out. These mechanisms are studied 

within the framework of Continuum Damage Mechanics by using results of micromechanical 

analyses. An explicit expression of the Helmholtz free energy density is derived in the case of 

monotonic load conditions. In particular, internal variables are carefully chosen to describe the 

degradation mechanisms (e.g. a damage parameter characterizing matrix cracking, another one 

modeling fiber breakage) and written in a more appropriate format to allow the derivation of 

constitutive equations applicable to structural calculations. 

In the case of cyclic load histories, the gradual degradation of the interface is modeled by an 

interfacial wear law. The evolution laws of some state variables have to be rewritten to account 

for interfacial wear. 

In the case of monotonic and cyclic load histories the failure conditions are written in terms 

of macrocrack initiation conditions (i.e. localization conditions). Failure conditions are compared 

with ultimate tensile strength predictions. In fatigue, failure conditions are summarized by the 

introduction of a shear stress map in which three different regimes appear depending on the 

stress amplitude in fatigue. 

Matrix Cracking Mechanism 

A Continuum Mechanics formulation applied to fiber-reinforced Ceramic Matrix Composites 

(CMCs) is written within the framework of the Thermodynamics of Irreversible Processes. The 

first step in establishing such a model is to identify the internal variables which define the state of 

the material. The second step is to determine the expression of the state potential in terms of the 

state variables and the third one to define the evolution laws of the internal variables. The state 

potential ij> is made up of the sum of two terms: viz. the elastic energy density tj>e and the stored 
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energy density ip . The elastic part is directly related to the applied load. The stored energy 

density is the result of residual stress fields which gives rise to macroscopic strains with no 

applied load. By considering two elastic steps, the total free energy density can be evaluated 

following a so-called 'cut and paste' technique introduced by Volterra [1]. This approach will be 

used to study the degradation of fiber-reinforced composites. 

General Expression of the Free Energy Density 

Loading a composite consisting of a brittle matrix supported by stronger fibers, usually 

causes multiple matrix cracking which is accompanied by interfacial debonding and sliding. In 

the following, we assume that the whole matrix-cracking process occurs at load levels lower 

than the fiber breakage mechanism, and therefore the former mechanism will first be analyzed. 

The matrix cracks, which are assumed to be perpendicular to the fiber directions, cause a 

stiffness reduction when the applied stress ö is tensile. Furthermore it is the closure of the cracks 

which indicates the onset of increased stiffness when the specimen is subsequently loaded in 

compression. We will use elementary cells of length L, characterizing the average crack spacing, 

and consisting of two different materials (m) and (f) as shown in Fig. 1, where E is the Young's 

modulus of the unbroken composite, Em that of the matrix (m), and Ef that of the fiber (0- The 

presence of matrix cracks implies a potential energy density change Aq>c 

-2 
Yc     E    c 

where 

öö = quantity depending on the crack density. 

The cracking mechanism is dissipative and does not store energy: it only influences äj>e. 
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Debonding followed by sliding gives rise to inelastic strains and hysteresis loops. To 

describe these phenomena, different models have been proposed [2, 3]. They all consider a 

friction length L here assumed to be equal to the debond length /d (Fig. 1). Similarly to cracking, 

which is a mode I mechanism, debonding per se is purely dissipative. When debonding and slip 

occur simultaneously, a self-balanced microscopic stress field is introduced The corresponding 

strains in the matrix and in the fiber are denoted by As (z) and Aeiz), respectively, where z is 

the current coordinate. By application of the principle of virtual work, an overall inelastic strain 

e. can be derived [4] 
in 

L 

Since the additional stress field is self-balanced the debonding and sliding processes are able to 

store energy. This result shows that to fully characterize both mechanisms the knowledge of the 

stored energy density tj> is crucial. It is expressed as the total elastic energy density associated 

with the residual stress field 

where 

f = volume fraction of part (f)- 

The matrix cracking process described by an internal damage variable complies with the 

requirement of a fully dissipative mechanism. In a Continuum Mechanics framework, the 

presence of a crack results in a stiffness reduction defined by an internal damage variable D [5]. 
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In the framework of Continuum Damage Mechanics, the potential energy change can be written 

as follows 

A(Pc
=2El=D (4) 

—       —2 
and the corresponding Gibbs' elastic energy density of a damaged material is written as cpg = o / 

2E(1-D). 

To characterize fully the debonding and sliding mechanisms two variables are needed. The 

first one is the inelastic strain 1. , and the second denoted by d, which is usually proportional to 
in 

the debond length /dis introduced to define the stored energy 

Ei2 

In addition to the total strain 8, the total free energy density t|> is therefore dependent on three 

internal variables are required: one damage variable D modeling matrix cracking and related to 

the average crack spacing, two variables e. and d describing debonding and sliding, and related 

to the debond length and the crack opening 

_    E(l-D) /- - \2   E Ei, 
^ = —2— (e-£in)  +2l 

(6) 

The associated forces are defined as follows 

° = -J . Y = -3# , y = -3d • X = — (7.1,2,3,4) 
as ds. 

Ill 
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Eqn. (7.1) defines the macroscopic stress a. Eqn. (7.2) defines the energy release rate density Y 

playing a similar role as the energy release rate G in Linear Elastic Fracture Mechanics. 

Combining Eqns. (7.1) and (7.2), one shows that the energy release rate density Y is 

proportional to the square of the effective stress ö / (1-D). Similarly, Eqn. (7.3) defines the 

stored energy density y released during debonding and sliding. Since the variable d depends 

upon the details of the interfacial behavior, the definition of its associated force is also dependent 

upon the interfacial behavior. Lastly, Eqn. (7.4) defines the back stress X related to debonding 

and sliding. Again its exact value depends upon the interfacial behavior. 

To determine the evolution laws of the internal variables, two ways can be followed. The first 

one is using simulations of the complete micromechanical model along the lines developed for 

instance by Feillard et al. [6] to get the evolution of crack spacing L and debond length l^ and 

then the state potential. The second one is by performing experiments. The damage variable D is 

obtained by measuring the initial unloading modulus (Fig. 2) and the corresponding inelastic 

strain is I. . Applications of these kind of identification procedure can be found in [7]. 

Relationship between Internal Variables and Microscopic Quantities 

In this sub-section, expressions of the three internal variables D, I. and d are derived for 

specific cases (Fig. 1). Using a shear lag analysis [8], the damage variable D can be shown to be 

linked to the average crack spacing L by the relation 

D  _ Q-0Em tanhßL 
1-D"     fEf        ßL 

(8) 

where the constant ß is a function of the elastic and geometric properties of the fiber and the 

matrix and is on the order of 10 mm-1 for many CMCs. The strain distribution Aeiz) in the 

friction zone in the part (0 is assumed to be linear and characterized by a constant interfacial 

shear strength x [9]. It is also assumed that the debond strength is negligible so that there is no 
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longitudinal stress jump at the crack tip [3]. When debonding occurs, the inelastic strain s.  is 

then given by 

where 

Rj = fiber radius, m, and 

/d= debond length (inversely proportional to TQ), m. 

Eqns. (2) and (9) show that the inelastic strain is a function of the average crack spacing as well 

as the debond length. The definition of the variable d is directly obtained from its definition in 

the expression of the stored energy TB given in Eqn. (3) 
's' 

3<M>Em;d ^Ä-mrz <10> 

The damage variable d defines the size of the slip zone related to the crack spacing length 1^1 L. 

Effect of Stress Redistribution due to Matrix Cracking 

To study the ability of CMCs to redistribute stresses, a two bar structure is analyzed (see Fig. 

3.1) which describes the effect of a strain concentration. This example is representative of more 

complex configurations (e.g. plates with holes, notched specimens, pin-loaded structures) for 

which strain concentrations occur. The length and cross sectional area of bar (1) are L and (1- 

f)S, and of bar (2) are kL and fS. This model allows variation of the load distribution in the bars 

and consequently the stress concentration. To simplify the analysis, only matrix cracking is 

modeled by the introduction of the damage variable D (i.e., no inelastic strain). The damage 

variable evolves provided any local stress is greater than the matrix cracking stress amc up to the 
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ultimate strength au. When a constant load S2 is applied, three different regimes can be defined. 

First, when the stress level is low (i.e., 2/a^, < 1-f+f/k), there is no cracking (o\ < a   , a, < 

amc) and the two bars behave elastically thereby defining an elastic regime. Second, for higher 

stress levels (1-f+f/k :S 2/a^. < k( 1-0^(1-0+0, *e shortest bar (i.e., bar (1)) experiences 

cracking (CTJ £ amc) whereas the longest one is still elastic. This condition is defined as confined 

cracking. The upper bound of this regime shows that the effect of confined cracking is a 

reduction of the stress concentration from an initial value of k to k( 1-D.) assumed to be greater 

then 1. Third, for very high stress levels (i.e., k(l-D1)(l-0+f < Z/o '), the two bars experience 

matrix cracking and that defines a regime of extensive cracking. The third regime exists provided 

the ultimate strength au is not exceeded. When au/amc < k(l-Du), where D is the damage 

parameter at the ultimate, the extensive cracking regime is excluded. On the other hand, when 

au/omc ^ k(1-D
u)'üie extensive cracking regime exists. When the strain concentration is low 

(i.e., ou/omc £ k), the latter regime will always occur. 

Wear Mechanism during Cyclic Loading 

Under cyclic loading, wear may take place at the fiber/matrix interface because of stress 

reversals [10]. An estimate of the effect of cyclic loading on the mechanical behavior is possible 

when the influence of interfacial wear is included in the model. The effect of wear is to a change 

of the residual stress field induced by debonding and sliding. Therefore as the number of cycles 

N increases, there is a variation of the associated additional strains As (z,N) and AE/Z,N). By 

inspection of Eqns. (2) and (3), there is a direct influence of wear on the inelastic strain as well 

as the damage variable d. Thus to write the evolution laws during fatigue, one needs to model 

the evolution of wear as a function of the number of cycles. 

We assume that Aem(z,N) = AEm(z)0(N) and Ae^z.N) = Aeiz)<I>(N) when a constant stress 

amplitude is applied, where O is a decreasing function with the number of cycles (<I>(0)= 1). If 

the interfacial behavior is modeled by a constant interfacial shear strength the previous 

hypothesis can be rewritten in terms of the evolution of the interfacial shear strength t(N) as a 
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function N: t(N) = x<P(N) [11]. The evolution of the variables s^N) and d(N) can be related 

to the initial values I.    and d. reached during the first cycle by 

I. (N) = -!sO. ,   d(N) = _2_ (ii) 
m <D(N) *(N) 

Effect of Stress Redistribution due to Debonding during Fatigue 

The model is now used to assess the stress redistribution during fatigue of the two-bar 

structure depicted in Fig. 3.1. The key mechanisms to consider are matrix cracking model by D 

and debonding and sliding described by i. . When the local stress is greater than the matrix 

cracking stress o   , the damage variable and the inelastic strain grow until the total strain 

reaches a critical value e . For the case when the cyclic load has a constant maximum value S2, 

three different regimes can again be identified. The elastic regime is the same as for a constant 

load condition when the behavior is everywhere elastic (when 2/a^ < 1-f+f/k). The confined 

cracking regime is defined by 1-f+f/k < 2/amc < ktl-DjXl-O+Rl-DjXl-OEaj^N)'/ o"mc, 

when the shortest bar (1) experiences cracking so that debonding and wear occur. In this regime, 

the most loaded bar (1) experiences a decrease of the maximum stress level o-j(N) = (2- 

fEa^NykVC W+f/kQ-Dj)) as the number of cycles N increases, therefore the damage 

variable D, remains constant The effect of confined cracking is to reduce the stress 

concentration. Third, for very high stress levels (when k(l-D1)(l-0+f-(l-D1)(l-f)Ea1<E>(N) / 

a    < 2/a   ), the two bars experience cracking, debonding and wean it is an extensive cracking 

regime. The boundary between the two regimes is defined by the following condition depicted in 

Figs. 4 

2 (l-DU-DpEa^N) 
 =k(l-f)(l-D,) + f  (12) 
°*m^ O" mc mc 
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The third regime exists provided the maximum accumulated strain e is not reached. The failure 

condition is represented by the condition Ej < eu that can be expressed as llo    < EE /ko 

[kCl-DjXl-O+n-ü-fKl-DpEcij^N) / amc. In many composites, EU is very well 

approximated by the ultimate tensile strain under monotonic load conditions and the 

dimensionless parameter Esu/a    varies between 4 and 8 for many composite materials [12]. 

When Es /ok < 1, the extensive cracking regime will never be reached because failure occurs 

prior to reaching the confined/extensive regime boundary. Conversely, when Ee lo   k > 1, the 

extensive cracking regime will occur. If <5(N-»4-<») < [{kU-D^-lXl-O+f-f/kJa c/(l-f)(l- 

D^Ectj fatigue life is infinite in the confined cracking regime (Fig. 4.1). On the other hand 

when <£(N-*+«0 > [{^l-Dp-lXl-O+f-f/kja^/Cl-OCl-DpEaj there is no fatigue 

endurance in the confined cracking regime (Fig. 4.2) and one number of cycles can be defined: 

Nj so that «(Nj) = [{^l-Dp-lXl-O+f-f/kJa^/d-Od-DpEaj. In Fig. 4, all the results are 

written in terms of a reference number of cycles NQ modeling the shear stress decay. In many 

CMCs, NQ is on the order of 10 to 100 and can be smaller for SiC/CAS composites [12]. This 

study will be complete if fiber breakage is modeled since for many composites it is the key 

mechanism leading to final failure. 

Fiber Breakage Mechanism 

A unit cell of length LR is considered where the matrix crack spacing is 2L. The length LR is 

the recovery length and refers to twice the longest fiber that can be pulled out and cause a 

reduction in the load carrying capacity. Away from a fiber break, as in the case of matrix 

cracking, the fiber stress builds up through the stress transfer across the sliding fiber-matrix 

interface. If the interfacial shear stress x is assumed to be constant, the recovery length is related 

to the maximum stress in the fiber by [ 13] 

LR = — (13) 
T0 
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where 

T~ reference stress (i.e., fiber stress in the plane of the matrix crack), Pa. 

The model now discussed takes account of three features induced by fiber breakage and fiber 

pull-out, viz. the reduction in stiffness due to fiber breakage, the inelastic strains due to fiber 

pull-out, and the hysteresis loops. The details of the unloading and reloading process are 

complex and to avoid this difficulty it is useful to introduce the crack opening displacement 6, 

which characterizes the material state related to the reverse friction. The crack opening 

displacement Ö is also useful in determining the conditions when closure occurs. To characterize 

the state of the composite, four quantities are required. These are the overall strain s, the friction 

length Lp the percentage of broken fibers, Pp within the recovery length L% = 2Lp and the 

crack opening displacement, 6. To derive the free energy density associated to a loading 

sequence, we consider two different elastic steps to reach the same state. The first step consists 

in moving the unbroken fibers wit the broken fibers with no external load by an amount Ö over 

a length Lp. The elastic density associated with this process is given by [14] 

c    fE- / ö \z     4-3PF 

and the opening displacement Ö induces an overall inelastic strain e. 
in 

i.   =£-PF (15) in    Lp   F 

The second step, during which no friction occurs, consists in adding an elastic loading from the 

previous state. It involves an additional elastic energy density given by 
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fEp ,_ _    2 
*e=-r(«-%) (i6) 

The total free energy density is then the sum of the two energies. A more convenient expression 

for the free energy is obtained by using state variables in a modified form. The state variables are 

the total strain, e, the damage variable modeling the percentage of broken fibers, D = PF, and the 

inelastic strains I. due to the crack opening displacement Ö modeling fiber pull-out The free 

energy density tjj can then be written in terms of the new internal variables 

^ = — I6" ein)+— 3ETe£ <17) 

The thermodynamic forces associated with the new state variables are respectively given by 

o = ^=fEF(s-Iin) (18.1) 

(41. \ 
in _ 

13D   " X = — =fEF[-3Er-£J (18-3) 
de. 

in 

where 

Y = energy release rate density associated with fiber breakage, Jm"3, and 

X = back-stress, Pa. 

When the fibers are assumed to exhibit a statistical variation of strength that obeys a two- 

parameter Weibull law, the evolution laws of the damage variable and the inelastic strain are 

given by [14] 
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D = 1 - exp 

with 

m+1 

¥M 
. \ 

S.    = S-8,,D in    2   M 

m 
?m+l _ 

Rr 

(19) 

(20) 

where 

? = current strain, 

i~M = maximum strain, 

S = characteristic strength, Pa, 

m = shape parameter, 

SQ = stress scale parameter, Pa, 

LQ = gauge length, m, and 

x = interfacial shear strength, Pa. 

Provided the fibers are subject to global load sharing, the load transmitted from each failed fiber 

is shared equally among the intact fibers, the ultimate tensile strength ö^g is then scaled by the 

characteristic strength [15] Sc according to 

°UTS = fScF(m> (21) 

The function F depends upon the shape parameter m and whether localization happens or not 

before the peak stress [13, 16, 17]. To assess the ultimate tensile strength, the function F is 

given by [13] 

2    1/(m+1)m+l 
F(m) = (mT2") m^2 

(22) 
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and to calculate the localization tensile strength, the function F can be written as [17] 

1      1     1/(m+1)r 1    i 
F<m>4(lnTr) |1+€XP(-STr)} (23) 

Eqns. (20) and (21) show that the interfacial shear resistance x is a key parameter. If wear is 

involved, it is expected that the interfacial shear strength x decreases as the number of cycles N 

increases as discussed earlier. The simple model of interfacial wear introduce previously can be 

used directly to evaluate the residual ultimate strength of fatigued CMCs [11]. The drawback of 

this simple wear model is that the influence of the load ratio is not modeled. In the following we 

will introduce another wear mechanism accounting for the load ratio R. 

Fatigue Failure Maps 

When cyclic stress experiments are performed on CMCs, it is known that the first cycle is 

often the most damaging in reducing of shear strength [10]. Therefore, following the First 

reversal of sliding, the frictional shear stress is assumed to decrease from xQ to xra. Upon first 

loading to a maximum stress o, a friction length 2Lp0 is reached (Lp0 ^ L) over which the shear 

strength is equal to xQ (see Figs. 5). Upon unloading to o-Aa = Ra a shear stress reversal 

occurs over a length Lyv for which the interfacial shear strength is equal to x^. Upon reloading 

to a there is shear stress reversal over the length Lyj for which the interfacial shear strength is 

still x^; together with a, sliding evolves from Lp0 to Lp,, for which the interfacial shear stress is 

x0. As the number of cycles N increases, there is an increase of LFfN+1x and LU(M+1N U8]. A key 

parameter is involved: y = (t(f-*a)/(
xo+x

a)> 0 < y < 1- It measures the amount of wear. Provided 

subcritical crack propagation does not exist, there is no further matrix cracking under cyclic 

loading conditions. However, fiber breakage may occur since the longitudinal stress in the fibers 

increases as a result of wear. In the following, we will neglect this phenomenon. 
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There are three cases to be considered. In case #1, L > Lj^, the condition for matrix cracking 

saturation is not reached. For case #2, L^ :£ L £ L^, matrix cracking saturation occurs and the 

friction characteristics involve xQ and xa. For case #3, L^ > L, matrix cracking saturation takes 

place but the friction characteristics only involve x^ (Fig. 5.2). An equivalent shear stress is 

defined to determine fatigue properties (Fig. 6.1). The evolution of the latter is given by 

"^ Lfcl™ 

T*(N)_^. 

T0 

i-YR-a-R)r 
v   (l-R)(l-f)E aRf        M 

^i 1 (^ LUN^L<LFN (24) 
1-Y ZIETQL 

-— = — L < krjN 
.1+7      *0 

3|C 

from which the shear stress map shown in Fig. 6.2 can be obtained. When N = 0, x (0) = xQ 

since no reversal occured. On the other hand, when N = +<», since y < 1, the maximum value of 

T*( oo) = T()( I_Y)/( 1-yR) and the minimum value of x*(») = x^. This last result shows that x^ 

can only be reached if saturation takes place during cycling (L < LpJ and complete reversal 

occurs at least one cycle over a length L (L < L^). This map is useful for deriving the ultimate 

fatigue strength according to Eqns. (21) and (24). Under monotonic loading conditions, the 

value of x in Eqn. (21) is taken equal to xQ, whereas under cyclic loading conditions, it is taken 

equal to x*(N). It is worth noting that these results include directly the amplitude effect by the 

presence of the load ratio R. 

Conclusions 

The basic mechanisms related to the degradation of ceramic-matrix composites submitted to 

monotonic and cyclic load histories were studied within the framework of Continuum Damage 

Mechanics by using results of micromechanical analyses. An explicit expression of the 

Heimholte free energy density was derived in the case of monotonic load conditions. In 
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particular, internal variables are carefully chosen to describe the degradation mechanisms (viz. 

matrix cracking, fiber breakage). In the case of cyclic load histories, the gradual degradation of 

the interface was modeled by the introduction of the effect of interfacial wear. The effect of 

stress redistribution is analyzed on two-bar structures. 

In the case of monotonic and cyclic load histories the failure conditions are written in terms 

of macrocrack initiation conditions (i.e. localization conditions). Failure conditions are close to 

the ultimate tensile strength predictions. In fatigue, failure conditions are summarized by the 

introduction of a shear stress map in which three different regimes appear depending on the 

stress amplitude in fatigue. These maps are useful to derived the ultimate tensile strength after 

cycling. 
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Figure Captions 

FIG. 1—Elementary cell. 

FIG. 2~Schematic stress/strain curve. 

FIG. 3--(l): Two-bar structure, 

(2): Stress redistribution map exhibited by matrix cracking. 

FIG. 4~Stress redistribution map exhibited by debonding and sliding when 

f/kd-DjHk-O + f-f' 
(1): S>(N—+oo) * i  J 

a mc 

(1-Od-DpEaj 

[{kd-D^-l^l-O + f-I' 
(2): <EKN—+oo) > L —- 

a mc 

(l-Od-DjJEaj 

FIG. 5-Shear stress profile along the fiber direction during one unloading (1) - reloading (2) 

sequence. 

FIG. 6-(l): Depiction of the equivalent shear stress x*(N), 

the symbol      \ ^_ denotes the slope of a pointed straight line. 

(2): Shear stress map when xa)/x0 = 0.2, R = 0. 
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CONTINUUM DESCRIPTION OF DAMAGE IN 
CERAMIC-MATRIX COMPOSITES 

By 

Alain Burr, Francois Hild, and Frederick A. Leckie 

Abstract 

A constitutive law is proposed for Ceramic-Matrix Composites which models 

matrix-cracking, sliding, fiber-breakage, and fiber pull-out These different mechanisms 

induce loss of stiffness, inelastic strains, hysteresis loops, and crack closure. The features 

are analyzed within the framework of Continuum Damage Mechanics by the introduction of 

physical internal variables identified previously in material science investigations. The 

procedure is applied to a SiC/SiC [0/90] laminate composite using the results of pure 

tension tests of two laminate orientations. Each test involves a series of loading and 

unloading sequences. In order to verify the material description the behavior of an 

Iosipescu shear test is predicted using a Finite Element calculation and the results are 

compared with experiment 
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1. Introduction 

This study is concerned with the behavior of ceramics reinforced by continuous 

ceramic fibers. It has been demonstrated by Aveston et al. [1971] that following matrix- 

cracking, sliding occurs at the fiber-matrix interface which causes inelastic deformations. 

The presence of matrix cracks and inelastic deformations may impart to the material the 

ability to redistribute stresses. In fact the results of experiments on notched panels on 

SiC/CAS composites [Cady et al., 1995b] suggest the capacity of the material to 

redistribute stresses is sufficiently high for this material to be notch-insensitive. The ability 

to redistribute stress is an important property since design studies indicate that working 

stresses are sufficiently high for matrix-cracking to be unavoidable in regions of stress 

concentration. 

The micromechanics which describes interface debonding and sliding has been 

established by Hutchinson and Jensen [990] and Evans et al. [1994]. In contrast to the 

early phenomenological studies [Ladeveze, 1983] the intention of the present study is to 

develop a continuum description of the damage processes which is mechanism-based and 

which may be used to describe the behavior of Ceramic-Matrix Composites (CMCs) under 

the conditions of multiaxial stress occurring in practice. Since crack spacing at saturation is 

small [Beyerley et al., 1992] in most CMCs, Continuum Damage Mechanics is an 

appropriate means of describing degradation since changes in elastic moduli measured on a 

macroscopic level provide a simpler and more robust means of measuring damage than 

does microscopic measurement of crack density, which requires the average of many 

readings before reliable values are established [Jansson & Leckie, 1993]. 

By combining Continuum Damage Mechanics (CDM) [Lemaitre, 1992] with the 

micromechanical studies referred to previously, constitutive equations are developed which 

lend themselves to the finite element procedures commonly used in practice [Zienkievicz & 

Taylor, 1989; Hibbitt et al., 1993].   The CDM formulation applied to reinforced 
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composites is written within the framework of the Thermodynamics of Irreversible 

Processes [Coleman & Gurtin, 1967; Rice, 1971; Germain et al., 1983]. The first step in 

establishing such a model is to identify the internal variables which define the state of the 

material. The second step is to determine the expression of the state potential in terms of the 

state variables and the third one to define the evolution laws of the internal variables. 

The model is developed along the lines described, for instance, by Ashby [1992]. As 

mentioned earlier, the aim of the model is to be applied to structural applications. The 

degradation mechanisms are first determined by analyzing unidirectional CMCs in Section 

2. The model is then extended to multidirectional systems in Section 3 by modeling the 

same mechanisms. The procedure described in the previous paragraph constitutes the 

general framework in which the model is written. In Section 4, the model identification is 

developed. In particular the number of tests constitutive of the input to the parameter tuning 

are discussed. The procedure is applied to continuous fiber SiC/SiC composites in a [0/90] 

lay-up for which suitable experimental data are available [Pluvinage, 1991] Section 5 is 

concerned with the prediction of a Iosipescu shear experiment The results are compared 

with experimental data. This last section constitutes a first validation of the model. 

2.  The  Tensile  Stress-Strain  Relationship  for Unidirectional 

CMCs 

Post-mortem analyses of broken specimens indicate the presence of arrays of 

microcracks in the matrix which are accompanied by debonding and friction at the fiber- 

matrix interface. Hutchinson and Jensen [1990]and Evans et al. [1994]have analyzed the 

behavior of unidirectional CMCs in tension by considering the unit cell shown in Fig. 1, 

when matrix-cracking of spacing 2L is accompanied by debonding and sliding at the 

interface over a friction length 2/p. The micromechanics analysis can predict the one- 
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dimensional macroscopic stress-strain response shown in Fig. 2. The microcracks are 

usually aligned with the principal stress or strain directions. By studying a cracked panel 

with crack of length 2a in a cell of area 4LW (Fig. 3), the reduction in stiffness may be 

estimated. If the initial behavior of the elementary cell is isotropic and elastic, and Young's 

modulus is E, it can be shown that the stiffness loss depends on the crack density defined 

as Jta2 / 4LW. By assuming plane stress conditions, and that the crack interactions can be 

neglected, a first approximation for the reduced elastic modulus E can be written as 

E 1 
W E= ^ 

1 + 24LW 

This relationship can be recast in the framework of CDM [Lemaitre & Chaboche, 1978]as 

(2) |=1 -D 

where 

4LW (3) —73 1 + 2 4LW 

is the damage variable associated with the crack density. When D is small, a first order 

solution to Eqn. (3) is given by 

(4) D~24LW 
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so that the damage variable is proportional to the crack density. In the case of constituents 

with different elastic properties, D depends upon the elastic properties of the two 

constituents, as well as on the geometry (i.e., the ratios a/R and a/L, see Fig. 1, where R 

is the fiber radius). The uniaxial stress-strain relationship becomes 

(5) a = =Ee 
V 1-D 

The elementary cell illustrated in Fig. 1 has been analyzed by various authors [H & J, 

1990; E et al., 1994], but a different analytic approach is now used which follows the 

thermodynamic developments of Rice [1971] and Germain [1983] and which can be 

formulated conveniently in one and three dimensions alike. This is done by calculating the 

internal elastic energy density in the unit cell [Hild et al., 1996] caused by matrix-cracking, 

debonding and sliding at the interface. Two 'cut and paste1 steps are used to evaluate the 

elastic energies following approaches introduced by Volterra [1907] and applied to the 

analysis the elastic behavior of homogeneous and isotropic media by considering the elastic 

properties of a cut cylinder [V, 1907; Love, 1927] as well as inclusions in an infinite 

medium Eshelby, 1957] or to the study creeping materials [Cocks & Leckie, 1987] The 

first step consists in moving the unbroken part (2) with respect to the broken part (1) with 

no external load by an amount As over a length l^ (Fig. 4). Because of interfacial sliding, 

this displacement A gives rise to a self-balanced linear stress field along a length l^ in 

parts (1) and (2) when the interfacial behavior is assumed to be characterized by a constant 

shear strength. By integration over /p and then averaging over the total length L, the elastic 

energy density associated with this process is given by 

o * =3—E—\q\ L 
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The crack opening displacement As due to slip induces an irreversible or inelastic strain a 

expressed as 

(7) a = TI 

The second step consists of an elastic loading of the damaged system so that the elastic 

energy density is given by 

(8) T|)e = yE(l-D)(e-a) 

The total elastic energy density is the sum of the two elements of the energy densities so 

that 

1              (-    \2   2fEi(1-f>E2fV (9) ii, = IE(l-D)VE-a; +3 g  T^- L 

For convenience the energy density can be expressed in a more compact form by using 

state variables which are the total strain I, the damage variable D modeling the loss of 

stiffness due to the cracking mechanism, the inelastic strain a derived previously (Eqn. 

(7)), and the damage variable d = SfE^ / 4(l-f)E2L which defines the size of the slip 

zone related to the average crack spacing. The friction length saturates when the cracking 

process stops (L = %) along with cracking damage D. Upon loading, all the internal 

variables vary (since L, ^ and As evolve), whereas upon unloading, the only variable to 

vary is the inelastic strain a (only A changes), the other variables are constant. The elastic 

energy density in terms of the new internal variables is [H et al., 1996] 
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T|,=4E(1-D)(e -cc)  +*E& (10) 

The forces associated with the state variables (e,D,d,cc) are respectively given by 

(11.1) 5 = ^=E(l-D)(i-a) 
dl 

dtp   Et-       \2 

(11.2) Y = -^=2^e " a* 
2 

dtp    E /a\ 
(11-3) y = -dd = 2(dj 

_,    dtp       -    _a 
(11.4) X = ^=-a + ET 

These associated forces are useful in particular to determine the relevant forces driving each 

mechanism. Matrix cracking is assumed to be driven by Y, which plays an identical role as 

the energy release rate G in the framework of Linear Elastic Fracture Mechanics. From a 

micromechanical analysis [H et al., 1996] it can be shown that the back-stress is dependent 

on the applied stress ö, therefore the driving force of the inelastic strains can be taken as the 

stresses acting in the same direction. The same assumption can be made when the evolution 

of the damage variable d related to sliding is analyzed, i.e. the driving force of d can be 

chosen to be its associated force y, or the applied stress a. 

In the present approach the growth laws of the internal variables (D,d,a) are 

established from macroscopic quantities measured in the course of unloading and reloading 

sequences. To this end use is made of the solution of the response of the unit cell (Fig. 1) 

when subjected to an unloading/reloading sequence during which the magnitude of the 

shear stress remains constant 
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The expressions obtained from the analysis for the residual stress px and the internal 

variables D,d,ct in terms of the macroscopic quantities shown in Fig. 2 are given 

respectively by [H et al., 1996] 

(12-1) -R-= 

(12.2) 

(12.3) 

(12.4) 

-Pi 
"> 

1.   + 28 E 
/   m                 1 v  M       in            ' 

-   2ÖE 

E " 
\j       481             1 

SxJÖ - \ß r>       M            in u — 

HA ~ «;„ - 28e M          in 

d    V^in + 26 

4~_ 
£M "  Ein " 

d  ^"Pid 

8)8 E 

281 

-D) 
2      E(l-D) 

where -p^ / E is the residual stress in the broken layer (1). Equations (12) are only valid 

when a constant shear strength characterizes the interfacial behavior, and lastly Eqn. (12.4) 

is only valid for monotonic loading conditions. 

By performing a series of unloading/reloading sequences the internal variables can be 

determined from experiment using Eqns (12). The residual stress pj is calculated from 

Eqn. (12.1) and it is a test of the effectiveness of the model that the same value of the 

residual stress is obtained for each loading sequence. The values of D and d are given by 

applying Eqns (12.2) and (12.3) respectively. The information is now available to complete 

the calculation for Eqn. (12.4). The corresponding associated forces are obtained by the 

expressions given in Eqns. (11). The relationship between the internal variables and the 

associated forces can then be investigated by knowing the driving forces of each state 

variable. It is this method which is proposed to model the behavior of CMC laminates. 
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3. CMCs with Multidirectional Fiber Systems 

The one-dimensional investigation is now extended to a [0/90] laminate composite 

and to a [0/90] woven composite subjected to multiaxial plane stress states. In this paper, 

only monotonic loading conditions are analyzed, even though the present framework can be 

easily extended to cyclic loading conditions and to non-proportional loading conditions. 

Following established procedures, the properties of each layer are first determined and 

those of the composite are then calculated by ensuring compatibility conditions. 

The components of each layer consist of the matrix, the fiber and the interface, with f 

being the fiber volume fraction. The fiber direction defines the 1-2 axes. The axes x-y 

correspond to the principal axes of the strains in the ceramic matrix. The definition of the 

axes used at the constituent, layer and composite levels are shown in Fig. 5. Following 

Section 2, the loss of stiffness due to matrix-cracking and fiber-breakage is first 

established and this is followed by the influence of the slip at the interface. 

3.1. Elastic Energies of the Composite Associated with Matrix-Cracking 

and Fiber-Breakage 

3.1.1. Constituent Level: Matrix and Fiber 

The initial behavior of the matrix is assumed to be isotropic. The presence of cracks 

leads the behavior to become anisotropic. The assumption is made that cracking occurs 

normal to the y-direction (e.g. maximum principal strain direction) in the matrix. Under the 

hypothesis of monotonic loading condition, only one damage variable is needed to model 

matrix-cracking, and is denoted by D   . The study of a cracked system normal to one 

direction shows that the Young's modulus along that direction as well as the shear modulus 
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are altered [Budiansky & O'Connell, 1976; Chaboche, 1982] and that the expression of the 

elastic energy density of the matrix is 

<131) ^"T l-v^(l-0> mx       my 
+ 2 Gm(Dmv) e£ mv  my7   mxy 

with 

G_ 
Gm(Dmy)= ~  

1 + 
_my_ 

1 " Dmy   2<1+Vm> 

It is assumed that the fibers are aligned along the 1-direction and that fiber-breakage 

is perpendicular to the fiber direction. Therefore the elastic energy density is given by 

(13.2) 4f = \ (^ (1 - Dfl) sf
2
n + Ef 4J) + 2 Öpn) zfl2 

The expression of the stresses in the matrix am and in the fibers af are obtained by 

partial differentiation of the elastic energy density with respect to the strain tensors ^ and 

Er respectively 

(14.1) 

(14.2) 

and the associated forces to the damage variables are defined as 

o\~ = 
^m 

=m d* =m 
dyf 

2r ö|f 
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dip 
(143) Ymy = ^" 'my 

(14.4) Yfl=^ 

These generalized forces are the energy release rate densities associated with matrix- 

cracking and fiber-breakage, respectively. They play similar roles as the force Y 

introduced in Section 2, and therefore are assumed to be the driving forces of the damage 

variables. 

3.1.2. Layered Composite 

When the composite consists of layers of unidirectional fibers with different 

orientations, the laminate properties are determined by applying laminate theory to the 

properties of individual layers. 

3.1.2.1.  Layer  Level 

A layer consists of fibers aligned along one orientation (the 1-direction) embedded in 

a matrix. To determine the behavior of this layer, micro-interface compatibility conditions 

are written in terms of the strains eL and stresses tr* on the layer level. These conditions 

are the compatibility and the equilibrium between a fiber (tensors Sj. and af) and the 

surrounding matrix (tensors s and o ), which takes place in that system. Therefore, it is 

more convenient to write the conditions in the 1-2 material frame as follows, 

(15-D «Wl = efii = Eh 

(15-2) fm0»ll + ff°fllss0il 
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(15.3) fmem22 + ffef22 = e22 

(15.4) am22 = af22 = °22 

(15.5) fmE
ml2 + ffEfl2 = El2 

(15.6) CTml2 = afl2 = a12 

When the principal strain directions do not coincide with the material frame, Eqns. (14.1- 

2) have to be rewritten in the 1-2 frame. The application of Eqns. (15) then defines the 

elastic properties of the layer 

(16.1) gL = |L(DmyDfl):iL 

From Eqn. (16.1), the elastic energy density ij>L associated with matrix-cracking and 

fiber-breakage on the layer level can be written as 

(16.2) ^L = hL:lL(Dmy'Dfl):iL 

Matrix cracking and fiber breakage are dissipative mechanisms which do not store energy. 

Therefore they influence only the reversible (i.e., elastic) part of the free energy density. 

3.1.3. Composite Level 

For simplicity, the case of two layers at 0 and 90 degrees are considered. The 

micromechanical quantities associated with the 0 degree layer are superscripted by °°, and 

those at 90 degrees by 9°. The elastic behavior of the composite system is determined by 

applying classical laminate theory. The compatibility condition and global equilibrium allow 

to get the overall stresses a and strains & 
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(17.1) 4 = |00 = |90 

(17.2) g=f00o00 + f*)g90 

By solving Eqns. (17) and using Eqn. (16.1), the overall behavior of the composite is 

defined as 

(18.1) £=F>mrDmrD>f?):i 

with 

From Eqn. (18.1), the elastic energy density iJ>D associated with matrix-cracking and 

fiber-breakage on the composite level can be written as 

(18.2) ^ « f°%°° + f90^90 

with 

V°=h:f><P!£.Di?):« 

3.1.2. Woven Composite 

Woven composites are another architecture commonly used. Eqns. (16) can be used 

also for woven architectures. This approximation is relevant when two different damage 
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mechanisms can be exhibited in the tows at 0 and 90 degrees. Also, the effects due to fiber 

cross-over are neglected. Therefore the results developed so far can be extended to woven 

architectures. 

However, there may be some situations in which the distinction between the matrix 

of the tows at 0 and 90 degrees is more difficult to make because there is only one matrix- 

cracking mechanism. In place of Eqns. (16) for the single layer, the equilibrium and 

compatibility conditions are given by the following equations written in the 1-2 frame 

(19.1) emll = sfll = eH 

(19.2) omll = ofn 

(19.3) (l+fm) omll + ff °fn = 2an 

8_ii — S^n — so (19.4) 8m22=£f22 = 822 

(19.5) am22 = af22 

(19.6) (1+f
m)am22 + ff<42 = 2a22 

(19.7) f
m
eml2 + ffSfl2 = e12 

(19.8) a
ml2 = afl2 = C?l2=:ö12 

By solving Eqns. (19), and noting that there exists only one degradation mechanism 

taking place in the matrix characterized by one damage variable Dmy and two degradation 

mechanisms associated with fiber-breakage in the 0 and 90 degree directions (D^, D^), 

the overall behavior of the composite is defined as 

(20.1) £ = fDmrD??'Dh0):i 

The elastic energy density i|>D associated with matrix-cracking and fiber-breakage on the 

composite level can be written as 
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(20.2) t|>D - - e : fDmy,D~Dg)): e 

3.2. State Potential Associated with Debonding and Fiber Pull-Out 

Inelasticity is essentially due to sliding at the interface between the fiber and the 

matrix. Sliding is involved in debonding as well as fiber pull-out. From amicromechanical 

point of view, this sliding can take place as soon as a crack is bridged by fibers. In a CDM 

formulation, only the equivalent homogenous sliding and the associated forces are 

considered. By considering equivalent homogeneous sliding on the composite level, there 

is no way to distinguish the contributions due to fiber/matrix debonding and sliding, and 

inter-layer delamination. However, in most CMCs delamination is not as critical as in 

polymeric matrix composites for which the Young's moduli differences are far more 

important Therefore, the cell model used to describe cracking and sliding is that shown in 

Fig. 1. The analysis that has been done on a 1-D model (given in Section 2) can be 

formally extended to give the expression of the elastic energy density due to sliding of a 

layered composite along the 1-2 directions [Burr et al., 1995] 

2       Jl 
(21) 

with 

l?(all   .  a22> 
^i) = 2^+d-j + Iö a 12 

d12 

fOOgOOfSOj^O 
E=

fO0E00+  ^90 

f00G00f90G90 
G = JOOQOO +  f90G90 

100 



3.2.1. State laws 

The following development deals with layered CMCs. By using the results of Section 

2, the total elastic energy density of the composite is the sum of the elastic energy density 

of the damaged composite i|>D and the elastic energy density due to debonding and sliding 

(22) * = |(|-a): |(D» ,D* .D«1 ,D*>): (.-a) + t|-s(a,d) 

The force associated with total strain is 

(23.1) o^E^J^D»^«*-«) 

and corresponds to the macroscopic stress. The associated force to the damage variables 

modeling matrix-cracking and fiber-breakage are 

(23.2) Yi = ^- 

whereDi=1;4= {E£ ; D£ ; Dg ; D*>},andYi=1;4= {Y* ; Y» ; Y? ; Y*>} 

represent the corresponding energy release rate densities due to matrix-cracking and fiber- 

breakage. The associated force to the damage variables modeling sliding are 

dil>    di|>S 

(233) 2= 3d = Id" 
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where d = /dn ; d^ ; d12V and g correspond to the energy release rate densities due 

to debonding and sliding. The associated forces to the inelastic strains a are 

and represent the back-stresses in the sliding zone. 

3.2.2. Evolution laws 

The identification procedure is performed on a [0/90]s laminate architecture of CMCs. 

The first step is to define all the internal state variables needed to model the material 

behavior. The three total strain variables, (e.g., En, e22, e12), are given either from 

experiment or as input from a F.E. calculation. The four damage variables 
D-l-4 = "f Dm ; Dm ' Dfl ' Dn } are used t0 define the chan8e in the elastic 

properties, with Dm = XD^ ; D^]\ is the set of damage variables modeling matrix- 

cracking, and Df = •[ D^ ; D^\ is the set of damage variables modeling fiber-breakage. 

Assuming the damage evolution laws, Dm(Ym) and Dj(Yf) are functions of the associated 

forces Ym = {YJ£, ; Y^y}, and Yf = {Y^ ; Y^} respectively, then only two 

evolution laws, one for each mechanism, are sufficient to compute the four components of 

damage. The three damage variables, «f dn; d-^ ; d12J-, define the sliding distances, 

with dn or cL, being associated with sliding in the fiber directions and d12 associated with 

shear sliding. Consequently only two evolution laws are needed, dn(yu) or d^Cy^), and 

dl2<yi2)- 

For the same reasons, two evolution laws for the inelastic strains, a11(Xn) or 

cu-CX^), and a12(X12) define the evolution of the three inelastic strains, 

/an ; a22 ; a12V In conclusion, the model has 13 state variables, three of which are 
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strain inputs and the remaining 10 micromechanical internal variables are derived from 6 

evolution laws. Therefore, the set S of state variables is (Table 1) 

(24.1) S = {e ; a ; Di=1;4 ; d} 

and the associated forces F are (Table 1) 

(24.2) F={^»X;Yi=1;4;;£}- 

The second step is to define the relevant tests required to identify the growth of the 

six internal variables. This is achieved from unloading/reloading tests performed at regular 

intervals and measuring the macroscopic inelastic strain upon complete unloading, s^, the 

macroscopic damage of the composite, D, and the maximum hysteresis loop width, 5e 

(Fig. 2). Using Eqns. (12), the internal variables can be calculated. 

When tension is applied at 45 degrees on a [0/90]g layered composite, the 

macroscopic damage variable, D45, is related to the microscopic damage variables taking 

place in the matrix alone, {D™ ; D^y}' by using the transformation rules given in the 

Appendix. Moreover, in this particular case, the two damage variables D^y and Dmy have 

the same value. Therefore, the evolution law, Dm(Ym), is directly given by the evolution of 

the macroscopic damage of the composite D4 (Fig. 6). 

The evolution law of the damage variable associated with fiber-breakage, Dff{), is 

found from measurement of the macroscopic damage D00 (Fig. 6) in a tension test at 0 

degree on the [0/90] which has been compensated by the contribution matrix-cracking 

which is calculated from the results of the first test. 

Similarly, the evolution laws of the state variables related to sliding, ©^(X^ or 

a22(X22), and dn(yn) or d22(y22) are known from the evolution of the macroscopic 

inelastic strain upon compete unloading l9J = an(au=0), the macroscopic damage of the 
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composite, D00, and the maximum hysteresis loop width, öe00, using generalized 

micromechanics relations (Eqns. 12) 

(25.1) 

(25.2) 

(25.3) 

(25.4) 

\ 

- 1 
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Finally, returning to the results of the tension test at 45 degrees on a [0/90]s layered 

composite (Fig. 6), the evolution laws of the state variables related to sliding, a12(X12) 

and d10(y,-) are given by the following relationships similar to those calculated by the 

micromechanical analysis 

(26.1) 

(26.2) 

4 
I45 

in 

sg - «£ 
"12 

a\2~   2 

i45 

1 + *12 

In this analysis, it can be noticed that the residual stress -p45 in the tension direction is 

equal to zero, and therefore e45 = 26145, which leads to the above results. Equations (25) 

can be used to predict the overall behavior of the analyzed CMC. However, they are valid 
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provided the interfacial behavior can solely be modeled by a constant interfacial shear 

strength. This is not the only model available to study CMCs. Therefore the evolution laws 

of the damage variables as well as the inelastic strains are determined by direct 

measurement of their values at different stress levels. The drawback of this approach is that 

the model is not completely identified since the damage variables related to debonding and 

sliding are not identified. Therefore the part of the free energy that is stored is not fully 

determined since it depends upon the details of the interfacial behavior. The stress/strain 

relationship however is known and thus a structural analysis can be performed. 

In summary, only two tests, on the same architecture, enable us to extract all six 

evolution laws that define the behavior of the material (see Fig. 6). Two tensile tests are 

sufficient when the back-stresses are computed (therefore the damage variables related to 

debonding and sliding). In the following it will be shown that two tests are still sufficient 

as long as the evolution of the inelastic strain a 12 can be obtained by the analysis of one of 

the tensile tests. 

4. Model Identification 

The identification is performed on a [0/90]s laminate architecture of a SiC/SiC 

composite using the experimental results of Pluvinage [1991]. Only two tension tests are 

used to establish the evolution laws of the damage quantities and the inelastic strains. 

The first step is to consider the elastic properties. Inspection of the composite [P, 

1991]indicates the presence of porosity in the matrix. Because the model is mechanism- 

based, the only means of accounting for this porosity is by an initial non-zero matrix 

damage quantity, DmQ. The measurement of Young's Moduli E00 and E45 respectively for 

a 0 degree and 45 degree tension tests combined with their analytic expressions gives the 

value of the initial non-zero isotropic damage quantity, Dm0 = 0.7, which affects only the 

initialelasticproperties. This damage value is consistent with experimental observations of 
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initial porosities due to the Chemical Vapor Infiltration technique used to process these 

materials [P, 1991]. 

The evolution laws of the state variables are written in terms of the associated forces. 

Therefore, the evolution of the damage variables is written as a function of the strain energy 

release rate densities. The evolution of the inelastic strains is written in terms of the 

corresponding back-stresses. It can be shown that the back-stresses are linearly 

proportional to the macroscopic stresses as shown in Eqns. (23.4) and (25.4). For the sake 

of simplicity, the evolution of the inelastic strains is thus written in terms of the 

macroscopic stresses. Lastly, the evolution of the damage variable d is not explicitly needed 

in the present approach since only monotonic loading conditions are considered (see 

Section 2) and no particular statement is made concerning the interfacial behavior (see 

Section 3). 

From the analysis of a tension test at 0 degree, the maximum hysteresis loop width is 

close to half of the corresponding inelastic strain upon complete unloading. It is concluded 

from Eqn. (25.1) that the macroscopic residual stresses are very small and will therefore be 

neglected. 

The variation of D    with Y obtained from the experimental data is shown in mm 

Fig. 7.1. Since matrix cracking is related to the presence of randomly distributed flaws, an 

appropriate form of evolution law which can fit the data shown in Fig. 7.1 is given by a 

Weibull law [1939; 1951] 

(27) D=D: 

/ 
m       sat 1 - exp 

v _v      m 

Ym0 

The values that fit the data of Fig. 7.1 are 

(28) D^l.O   Ymth = 0.Jm"3   Ym0 = 0.6Jm-3   mm = 1.2 
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The threshold energy release rate density Ymth has a zero value in accordance with the 

hypothesis of no macroscopic residual stresses. The parameters Ym0 and mm are directly 

related to the evolution of cracking density as a function of applied stress. The damage 

parameter at saturation has a very high value in agreement with the fact that average crack 

spacing is very small for these composites [P, 1991] The evolution laws for matrix damage 

having been determined, the fiber-breakage damage Df can be plotted, as a function of Yf 

Using Curtin's relationship [1991] for fiber damage, the evolution law is given by 

(29) Df=l-exp 
Y   (mf+l)/2 
_f\   ' 
Y. fD 

In the following computations, it was assumed that during the matrix-cracking process, 

only few fibers break. Therefore, no attempt was made to identify the previous parameters. 

Lastly, the expression used to fit the evolution laws for the inelastic strains shown in 

Figs. 7.2 and 7.3 are 

<ai " ath> 
(30) «i =  

a0 

(31) a12 = Sign(x12) 

The material parameters of Eqns. (30) and (31) are related to the interfacial behavior. 

The introduction of the expression for x^ comes from the observation that the 

stress/strain curves obtained for tensile tests at 45 degrees and shear tests at 0 degree almost 

coincide for CMC systems. This observation appears to apply for a whole class of 

materials: SiC/SiC   SiC/CAS, SiC/C, C/C composites [Cady et al., 1995a]    and 
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presumably SiC/Al203 composites [Heredia et al., 1995]. One choice for x^ which 

satisfies this requirement is given by 

= ^/|Tl2 [T12 + |<0ll+022> (32) xq 

Similar behavior is observed in concrete for which both the hydrostatic and shear stress 

states influence the inelastic deformations Prucker & Prager, 1956] The definition of the 

equivalent shear stress given in Eqn. (32) enables us to identify all the evolution laws by 

analyzing two tensile tests. This hypothesis is crucial and will be checked in Section 5. The 

constants in Eqns. (30) and (31) which define the inelastic strains are given by (see Figs. 

7.2 and 7.3) 

(33) ath = 88MPa   a0 = 480GPa 

xth=154MPa   x0 = 64.8GPa 

This model is implemented in the industrial Finite Element code ABAQUS [H et al., 

1993]via a user material (UMAT) routine. This allows to investigate more complex loading 

conditions on a structural level. The Finite Element procedure was checked by analyzing 

pure tension tests at 0 and 45 degrees. The comparisons in terms of stress-strain between 

the experiments and the computations are shown in Figs. 8. There is a good agreement 

between the model and the experiments used to identify the model. 

5. Analysis of Experiments on SiC/SiC Composites 

When the availability of materials is restricted to planar form, the most usual means 

of obtaining shear data is to subject the Iosipescu specimen ftosipescu, 1967]to shear force 
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[P, 1991]. In order to investigate the suitability of the Iosipescu test as a means of 

obtaining shear data, a Finite Element analysis has been performed using the constitutive 

equations described and identified previously. The Iosipescu specimen shown in Fig. 9 is 

subjected to shear loading and measurement of the shear properties of the material are 

obtained by plotting the average stress at the minimum section against the shear strain 

measured by strain gauges placed at the center of the specimen. It is known that the shear 

stress at the minimum section of this specimen is sensibly constant when the material is 

elastic and isotropic, but it is not known if the constant shear stress assumption is valid 

when cracking occurs. In addition to verifying the suitability of the Iosipescu specimen, the 

tests provide an opportunity to measure the ability of the constitutive equations to predict 

the behavior of a component in which the stress state is different from those used in the 

identification procedure. 

The plot of the average stress against the strain at the center of the specimen is shown 

in Fig. 10. This prediction agrees with the experimental observations to within 5%. The 

stress-strain shear curve at the center of the ligament is also shown in Fig. 10. It can be 

seen that the average stress-strain shear curve underestimates the actual stresses. The 

difference, which is not large, is the result of the assumption that the shear stress and strain 

are almost uniform across the minimum section. The results of the finite element analysis 

shown in Fig. 11 indicate that the shear stress at the minimum section is essentially 

constant therefore justifying the use of the Iosipescu specimen as a means of obtaining 

shear data Lastly, the hypothesis made to write the evolution of the inelastic strain <x12 

(Eqn. (31)) as a function of the equivalent shear stress %   (Eqn. (32)) seems reasonable 

when the results of prediction of the Iosipescu test is compared with the experiments. 

Figure 11 also compares the shear stress profile for the linear elastic and non-linear 

calculations when the external load level is identical. The effect of non-linear stress/strain 

behavior allows the stresses to be redistributed when compared to a purely linear elastic 

calculation. This effect can be measured by the ratio of the average to maximum shear 
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Stresses in the elastic calculation (0.93) and in the non-linear analysis (0.95). This 

difference is not important since the shear stress profile is almost constant in the ligament 

even for a linear elastic computation. 

6. Conclusions 

A CDM model is proposed for CMCs which is mechanisms-based. The laws which 

relate the growth of the internal state variables to their associated forces have been derived 

from the unloading-reloading paths during tensile experiments for two different directions. 

The ability of the model to predict the response to another state of stress suggests the 

advantage of a mechanism-based approach. 

When applied to SiC/SiC [0/90] lay-ups, the present model has 10 internal variables, 

viz. three inelastic strains modeling sliding, three damage variables describing the amount 

of debonding and four damage variables accounting for matrix-cracking and fiber- 

breakage in the two plies. It is shown that only two different experiments in tension are 

needed to identify the growth laws of the ten internal variables. The model has the potential 

to be applied to other material configurations (e.g., SiC/CAS, SiC/C, C/C, and presumably 

SiC/ALO, composites) and architectures (e.g., woven configurations). Furthermore, the 

general framework presented herein has been applied to room temperature configurations 

and monotonic loading conditions. However extensions to cyclic load histories as well as 

high temperature applications can be included with minimal change to the state potential 

formulations. Evolution laws will have to be modified slightly. 

The reliability of the Iosipescu test is confirmed as a means of average stress-strain 

shear data, and the constitutive equations are able to predict the shear properties correctly. 

However, it is shown that the average shear properties may be slightly different from the 

actual stress-strain shear data in the center of the ligament. Therefore the identification of 

110 



the shear properties based upon the measurements on an Iosipescu test are, strictly 

speaking, only an approximation of the actual response in pure shear. 

The ability of stress redistribution due to the non-linearity of the stress/strain curve 

has been shown in the case of the Iosipescu experiment Stress redistribution is important 

for structural applications and needs to be further studied on other types of structures and 

load configurations (e.g., plates with holes, notches, pin-loaded structures). This work is 

still under way. 
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Nomenclature 

a crack size 

a inelastic strain 

a inelastic strain tensor 

a. inelastic strain component in the i-direction (i=l 1 or 22) 

a, , cu«, a 9 components of the inelastic strain tensor a in 1-2 frame 

d damage variable due to debonding and slip 

d debonding and sliding damage tensor 

dn, cL2, d12 components of the debonding and sliding damage tensor d in 1-2 

frame 

D, D , D    , D00, D90 damage variables modeling matrix cracking 

D, D00, D45 macroscopic damage variables 

Dr Dfl, D^, D9^ damage variables modeling fiber-breakage 

D- set of damage variables 

D    Y   ,. Y  n, m parameters of the evolution law of matrix-cracking damage 
sat     mtn'    mU      m r 

A crack opening displacement due to slip 

öe, öi00, 6s45 maximum hysteresis loop width 

E, Ep E2, Em, Ef Young's moduli 

E00 Young's modulus of the O-degree layer in the fiber direction 

E90 Young's modulus of the 90-degree layer in the fiber direction 

E equivalent Young's modulus 

E Young's modulus of a damaged material 
E(D    .D^.D?^) fourth order elastic tensor on the composite level of a woven 

composite 
E(p00 ^D

90
 ,D9?,D?P) fourth order elastic tensor on the composite level 

EL(D    ,D„) fourth order elastic tensor on the layer level 
= v  my'   fl/ 
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F^fD00 D°°) fourth order elastic tensor of the O-degree layer 
=   ^  my'   f 1 

F90^)90 D90) fourth order elastic tensor of the 90-degree layer 
=   v my'   f 1 

e macroscopic strain 

g overall strain tensor 

Sll' E22' £12 

ä 
sfll' £f22' Efl2 

ein 

component of the strain tensor E in 1-2 frame 

strain tensor in the fiber aligned along the i-direction 

component of the strain tensor E^ of the fiber in 1-2 frame 

inelastic strain upon complete unloading (o=0) 

7OO   -45 macroscopic inelastic strain upon compete unloading 
in'     in 

sL, s00, s90 strain tensor on a layer level 

-Pc components of the strain tensor e_ of the matrix in x-y frame 
Emxx'   myy'   mxy r =D1 

cos» components of the strain tensor 6_ of the matrix in 1-2 frame 
fcmll'   m22'   ml2 r =m 

s., s?9 Iw maximum applied strain 
M'    M      M 

f f fiber volume fraction 

f matrix volume fraction 
m 

fOO f90 volume fraction of the 0 degree and the 90 degree layer 

F set of associated forces 

G energy release rate 

5 " equivalent shear modulus 

G shear modulus of the damaged fiber embedded in the matrix 

G    a shear modulus of the undamaged and damaged matrix 
m'    m 

G00 shear modulus of the O-degree layer 

G90 shear modulus of the 90-degree layer 

L crack spacing 

7 friction length (assumed to be equal to debond length l£ 

v Poisson's ratio of the matrix 
m 

113 



R fiber radius 

S set of state variables 

i|) Heimholte free energy density (state potential) 

tj,D elastic energy density on the composite level 

■tye elastic (or reversible) free energy density 

ij) elastic energy density of the fiber 

ij)s stored free energy density 

■tyS elastic energy density due to debonding and sliding of a composite 

tpL elastic energy density on the layer level 

ijj elastic energy density of the matrix 

•ty00 free energy densities of the layer at 0 degree 

tj?90 free energy densities of the layer at 90 degrees 

p residual stress in the matrix 

p0° residual stress in the broken part of the 0 degree layer 

a effective (or microscopic) stress 

ö macroscopic stress 

a overall stress tensor 

°i l' °22' T12 components of the stress tensor a in 1-2 frame 

af stress tensor of the fiber 

oi stress tensor in the fiber aligned along the i-direction 

a stress applied to the composite in the i-direction (i=11 or 22) 

a^, a00, o90 stress tensor on a layer level 

a stress tensor of the matrix 
=m 

°M* ^M maximum applied stress 
ath' a0' %' ^O parameters of the evolution law of the inelastic strains 

x equivalent shear stress 

W width 
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X back-stress 

X back-stress tensor 

X   , X, , X components of the back-stress tensor X in 1-2 frame 

debonding and friction energy release rate density 

energy release rate density tensor due to debonding and friction 

components of the energy release rate density tensor £ in 1-2 

frame 

cracking energy release rate density 

energy release rate densities associated with fiber-breakage 

parameters of the evolution of fiber-breakage damage 

set of energy release rate densities 

energy release rate densities associated with matrix-cracking 

contraction wrt two indices 

y 

1 

yir V22' yi2 

Y 

V *fl 

YfO' m^ 

Yi 

Ym Y 1my 
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Appendix 

Let us consider a lamina with initial principal directions of orthotropy given by 1 and 

2. The initial principal directions of orthotropy, or material directions, often do not coincide 

with the loading directions given by x and y (Fig. 5). The z-axis is perpendicular to the 

plan (1-2) and (x-y). 

Under plane stress conditions, an elastic stress-strain relation in the material 

directions can be written in terms of the compliance matrix {S} 

(Al.l) 

/£ll\ 

22 

o /*11 b12  U   \ 

s12 s22 0 

0   s 66/ 

a22 

\T12/ 

or in terms of the stiffness matrix {Q} 

(A1.2) *22 

\xnJ 

Al Q: 12 0 \ 

\ 

Ql2 Q22 ° 

0    0  Q^/ 

(*n\ 
£22 

If we now consider the same expression written in the loading directions, the general 

stress-strain relation leads to a full compliance matrix {S} 

(A2.1) 
M f sn s12 s16 (°xx) 

8yy 
= S12 S22 S26 °yy 

\V 
\S16 S26 S66/ 

\\y) 

or to a full compliance matrix {Q} 
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(A2.2) 
(°*A fön Qi2 Qi6N 

^ 

% = 
Ql2 ^22 Q26 

£yy 

Vxy) 
U16Q26Ö66/ 

\v 

The relationship between the compliance matrix in the material directions, {S}, and in the 

loading directions, {S} can be written as follows 

(A3.1) {S} = {T}1{S}{T} 

and the relationship between the stiffness matrix in the material directions, {Q}, and in the 

loading directions, {Q} can be written as follows 

(A3.2) -1 {Q} = {T}_1{Q}{T} 

where the superscriptT denotes the matrix transpose, and {T} the transformation matrix 

associated with a positive rotation of angle 6 of principal axes about z from material axes 

(Fig. 1) 

(A4) {T} = 
cos2e sin29 - 2sin6 cos8 
sin26 cos26 2 sinö cos8 

sin0 cos6 -sinS cos0 cos 0 - sinT) 
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Table 1 

Table 1: Thermodynamic variables modeling elasticity, matrix cracking, debonding and 

sliding, fiber breakage and pull-out 

STATE VARIABLES 
ASSOCIATED 

FORCES 

MECHANISM Observable Internal 

ELASTICITY Total strain 6 a Stress 

MATRIX 
CRACKING 

Damage 

variables 
•- 

m 
D90 

m 

yOO 
m 

Y90 
m 

Energy 
release rate 
densities 

FIBER 
BREAKAGE 

Damage 

variables 

voo 
xf 
Y90 

Energy 
release rate 
densities 

DEBONDING 

& SLIDING 

Inelastic 
strain 

a X Back-stress 

Damage 

variables 

d^ 
d12 

yny^ 
yi2 

Energy 
release rate 
densities 
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Figure Captions 

Figure 1: Elementary cell containing a crack. A debond zone is characterized by the 

debond length 2/p and the average crack spacing is 2L. 

Figure 2: Stress, Ö,  versus  strain,  e, during a loading-unloading-reloading 

sequence. 

Figure 3: Elementary cell of size 2L x 2W containing a crack of size la. 

Figure 4: Motion of the unbroken part (2) with respect to the broken part (1) with no 

external load by an amount As over a length /p 

Figure 5: The initial principal directions of orthotropy, or material directions, 1 and 2 

often do not coincide with the loading directions x and y. The angle 9 

measures their respective orientation. 

Figure 6: Flow chart of the identification procedure. 

Figure 7: Experimental and identified evolution of 

(1): the matrix-cracking damage variable Dm as a function of the strain 

energy release rate density associated with matrix-cracking Ym, 

(2): the inelastic strains a x l (or a^) as a function of the stress o^ 2 (or a22), 

(3): the inelastic strains a12 as a function of the equivalent stress x . 
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Figure 8: Experimental and identified evolution of the tensile stresses au as a 

function of the tensile strains E 11 in 

(1): a tension test on a [0/90] SiC/SiC lay-up at 0 degree, 

(2): a tension test on a [0/90] SiC/SiC lay-up at ± 45 degrees. 

Figure 9: Iosipescu specimen configuration. 

Figure 10: Experimental and predicted evolution of the average shear stresses on as a 

function of the shear strains y12 in a Iosipescu test on a [0/90] SiC/SiC lay- 

up. This evolution is compared with the evolution of the shear stresses an 

as a function of the shear strains y12 in the center of the specimen. 

Figure 11: Shear stress profile in the ligament of the Iosipescu specimen when the 

shear strain y12 in the center of the specimen is equal to 0.007 as a function 

of the relative distance y/b from the center of the ligament for a linear and 

non-linear computation. 
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Figure 5. 
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Advances in ceramic composites reinforced by continuous fibers 
Brian N Cox* and Frank W Zokt 

Ceramic matrix composites reinforced with continuous fibers 
are on the verge of insertion into hot engineering structures. 
Yet current research is only beginning to attack some of 
the most critical problems. Key developments in the last 
24 months include the formulation of constitutive laws for 
continuum mechanics analyses; the discovery of stable weak 
oxide-oxide interface systems; the analysis of how fiber creep 
limits life at high temperatures; confrontation of the problem 
of oxidation pesting at intermediate temperatures in SiC 
based systems; re-examination of the maxim that interfaces 
must be weak; and the advent of textile reinforcement as the 
solution to delamination problems. 
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Abbreviation 
CMCs     ceramic matrix composites 

Introduction 
The period covered by this review (1995 and the 
beginning of 1996, with selected inclusion of papers from 
1994) marks a major epoch in the history of research 
into continuous fiber reinforced ceramic matrix composites 
(CMCs). From the early 1980s, when CMC research 
first enjoyed large scale funding and the attention of 
significant groups all over the world, effort has been 
concentrated on a simple paradigm of the ideal CMC. It 
must have a weak fiber/matrix interface to allow energy 
absorption during fracture by the deflection of cracks, in 
the complete absence of any dislocation based toughening. 
Freed of stress concentration when the matrix cracked, 
strong fibers would continue to bear high loads. This 
approach to protecting CMCs from intrinsic flaws, notches, 
and damage was pursued almost entirely in the context of 
unidirectionally reinforced CMCs, with aligned loads; and 
mostly in terms of room temperature phenomena. It is now 
very well understood. (See [1,2] for recent articles covering 
many aspects of work up to 1995.) 

Structural applications almost never involve uniaxia! 
stresses; and the long sought pay-off for CMCs will 
certainly ccme at high temperatures. Now we see at 
last the reduction of micromechanical models and our 
detailed understanding of matrix cracking and statistical 
fiber failure to constitutive laws suitable for use in 
finite element calculations of structures under complex 

loads. The serious difficulties of ensuring durability 
at high temperatures are being confronted; oxidation 
pesting of SiC fibers at intermediate temperatures, fiber 
creep at higher temperatures, and the chemical stability 
of interfaces are all hot topics. Textile reinforcement, 
especially with 3D architecture, has appeared as the 
solution to the unavoidable vulnerability of brittle matrix 
composites to delamination. And even the central axiom 
that CMCs cannot be tough unless the fiber/matrix 
interfaces are weak is now being challenged. 

Modeling the inelastic regime 
Major progress has been made in the last year or two 
in developing design and reliability codes suitable for 
field use from the wealth of micromechanical models in 
the CMC literature. Effort has focused on generating 
constitutive laws for insertion into finite element models, 
with the goal of reducing the treatment of nonlinearity in 
CMCs to standard continuum mechanics. 

Nonlinearity in CMCs at room temperature involves 
matrix cracking, stochastic fiber fracture, damage local- 
ization, and fiber pullout. Two groups have presented 
exhaustive studies for unidirectional composites of the 
relation between micromechanical properties (including 
the interfacial friction stress, residual stresses, constituent 
elastic moduli, fiber radius, and fiber volume fraction) 
and the macroscopic stress-strain response under aligned 
loads prior to' damage localization and ultimate failure 
[3-9]. Prior and well established models of matrix cracks 
bridged by sliding fibers are used as the physical basis 
for modeling. Micromechanical properties are deduced 
directly from experimental hysteresis loops, obviating aay 
detailed tests of interface conditions, for example fiber 
pullout or pushout tests. One group has couched its work 
in the language of micromechanics more familiar to the 
CMC community [3*,4*,5]; the other in the language of 
continuum damage mechanics, but with a thermodynamic 
potential function derived from the same micromechanics 
[6,7,8",9]. They offer equivalent treatments of nonlinear- 
ity up to localization, with some variations in the point 
of view and in the level of micromechanical detail used 
in fitting data. Both sets of work are essential reading. 
More empirical (probably unnecessarily so) treatments of 
nonlinearity in unidirectional CMCs have also appeared 
[10]. 

Recent extensions of the continuum damage approach 
also deal with predicting the onset of damage localization, 
which is required to model ultimate failure and the notch 
sensitivity of strength [11]. Localization and subsequent 
fiber pullout involve distributions of flaw strengths and 
stress redistribution effects which are complex and not 
generally wel!  known in a particular material.  There 
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is a commensurate increase in the number of material 
parameters to be determined by calibrating experiments. 
Applications to circumferentially reinforced rotors have 
been presented, but proof of the predictive power of 
localization models is not yet convincing [11]. 

Dealing with more complex fiber architectures is also 
much more challenging. The response of a 0/90'laminate 
prior to localization under loads aligned with the O'fibers 
is the easiest case, since the cracking evolution is 
best understood [5]. Damage in textile CMCs involves 
much more complicated cracking patterns, for which 
micromechanical models are relatively crude (and not 
certain to improve, because of the difficulties of dealing 
with the tortuous heterogeneity of textiles). Continuum 
damage approaches are necessarily more empirical. 

Likewise, highly empirical approaches are most credible 
for multiaxial or off-axis loading, even in unidirectional 
CMCs. A general method for developing multiaxial 
constitutive laws up to localization has been demonstrated 
for plane stress cases, using a combination of standard 
tension, compression, and shear test data [12»]. When the 
constitutive laws are embedded in finite element calcula- 
tions of strain distributions around a stress concentrator, 
encouraging agreement is obtained with measured strain 
fields. Stiffness changes under off-axis loading have been 
measured ultrasonically [13]. 

This area of work represents the culmination of efforts 
to qualify CMCs as structural materials. Current activity 
focuses on dealing with rate dependent behaviour at high 
temperature, fatigue effects, and weakest link fracture 
statistics (volume effects). 

Fracture and notch sensitivity 
Tensile tests performed on specimens containing holes 
or notches have demonstrated that many CMCs arc 
relatively notch-insensitive [14-16,17,,18*,19,20,21*]. The 
net-section stress at fracture is typically 80-100% of the 
unnotched strength: considerably higher than the value 
calculated on the basis of the elastic stress concentration 
factor. Indeed, in some instances, there appears to be 
evidence of notch strengthening [14]. Measurements of 
in-plane strains (using moire interferometry [18*]) and 
stresses (using SPATE [14-16,17»]) have shown that 
strain concentrations are essentially unchanged by the 
inelastic deformation but stress concentrations are reduced 
dramatically. However, even in the most notch-insensitive 
materials, stress concentrations are not eliminated alto- 
gether, yet the net section strength is essentially equal 
to the unnotched strength. Similar conclusions have been 
reached from finite element simulations which incorporate 
the inelastic deformation [12»]. 

These results suggest that the failure stress should exhibit 
volume dependence,  being highest when  the volume 

under most stress is small (as it is ahead of a notch). 
If so, the strength should follow weakest-link scaling. 
Comparisons of strengths in tension and bending (taking 
into account the nonlinear stress distributions) support 
this hypothesis (McNulty JC, Zok FW, unpublished data). 
Issues related to strength variability are addressed in more 
detail elsewhere in this journal [22]. 

The degree of notch sensitivity is influenced by the nature 
of the inelastic deformation occurring ahead of the notches 
(Fig. 1). In some materials (e.g. NicalonTM/calcium 
aluminosilicate), a damage zone of multiple matrix cracks 
forms ahead of the notch, which has an analogous effect 
to the plastic zone in metals (designated Class II behavior 
by Evans [23*]). In others (e.g. C/C), nonlinearity arises 
from shear bands oriented parallel to the tensile direction 
(Class III behavior [23*]). In more brittle CMCs, fracture 
occurs by the propagation of a dominant mode I crack, 
with fiber failure and pullout in the crack wake, but with 
minimal inelastic deformation elsewhere (Class I behavior 
[23*]). Models of strength for Classes I and III have been 
developed, based on line-spring representations of the 
inelastic processes [24",25]. Models that take into account 
large scale sliding [26"] indicate that the maximum fiber 
stress in the bridging zone is somewhat lower than that 
predicted from the line-spring models; the latter are 
thus expected to provide conservative predictions for the 
stresses at the onset of fiber failure. 

Some censure is due to several authors over loose claims 
that a given material has been found to be notch 
insensitive. This generally fallacious conclusion has been 
based on tests performed with relatively small notches: 
typically 1-5 mm. Moreover, there has been almost no 
discussion of the effects of notch shape (circular holes 
versus sharp slits). In the presence of sufficiently large, 
sharp notches, the strength must follow the Griffith 
relation and the material must be notch-sensitive (as is 
even the most ductile metal). Researchers should identify 
the length scales associated with the bridging processes 
and hence the notch sizes and shapes for which notch 
sensitivity will occur. 

Compressive failure 
Compressive failure of CMCs has remained largely unex- 
plored. Some evidence exists that compressive strengths 
[27*] fall below tensile strengths [28»]. In CMCs with weak 
or porous matrices, observations to date [27*] show that 
compressive failure involves kink band formation within 
fiber bundles (plies or tows), similar to the prevalent fail- 
ure mechanisms in polymer matrix composites (laminates 
and textiles). In this case, compressive strength will be 
governed by the initial misalignment of segments of fiber 
bundles and the shear strength of the matrix. Compressive 
failure also involves interply and intraply delamination, 
which will probably be the principal mechanisms of failure 
in CMCs with nonporous, relatively strong matrices. 

138 



668   Ceramics, composites and intergrowths 

Figure 1 

Schematics of three classes of cracking found in unidirectional or 
cross-plied CMCs. (a) Class I, matrix cracking plus fiber failure; (b) 
Class II, matrix cracking, no fiber failure; (c) Class III, shear damage 
by matrix cracking. (Additional stress redistribution mechanisms exist 
in textile CMCs, because of the strong role played by heterogeneity 
on the scale of fiber tows or bundles. Their identification is a topic of 
current research.) 

Fatigue 
Fatigue failure occurs in most CMCs. The dominant 
mechanism at room temperature in CMCs based on 
oxide or SiC fibers involves matrix cracking on the first 
loading cycle, followed by debonding and cyclic sliding 
along the fiber-matrix interfaces. Repeated sliding causes 
wear of the fiber coatings, leading to a reduction in the 
interface sliding stress and a corresponding reduction in 
the fiber bundle strength [29,30*]. It can also lead to 
higher permanent inelastic strains and a reduction in the 
hysteresis modulus. The latter effects may be important 
for dimensional stability. The wear process is also likely 
to produce flaws in the fibers, further reducing the bundle 
strength. Such effects have been seen in fiber-reinforced 
titanium matrix composites (by comparing the strengths of 
fibers extracted from composites before and after fatigue), 
but not in CMCs, partly because of the difficulty of 
extracting fibers from ceramic matrices. Typically, the 
fatigue thresholds are >75% of the ultimate tensile 
strength (UTS) and the retained strengths following 
fatigue loading are almost equal to the UTS. However, 
limited data suggest that the fatigue threshold is reduced 
by notches (relative to the notched tensile strength) and 
negative stress ratios [31]. 

While fatigue effects in CMCs with SiC or oxide fibers 
appear to be mainly related to interfacial degradation, with 
minimal fiber damage, carbon fibers can be entirely worn 
away by fatigue. Thus generally severe fatigue effects are 
found in CMCs based on carbon fibers [32]. 

Delamination 
Whether toughness is achieved in a CMC by incorporating 
weak fiber/matrix interfaces or a porous or otherwise weak 
matrix around fiber bundles, strength under loads acting 
normal to the fiber direction will be seriously impaired. 
Thus while laminated CMCs exhibit encouraging in-plane 
toughness, they remain vulnerable to delamination. De- 
lamination can be resisted to some degree by in-plane 
fibers crossing the fracture plane obliquely, but the work 
of fracture remains well below 1 kjm-2 [33,34]. Laminates 
of 2D fabrics (e.g., plain or satin weave) are equally 
vulnerable. 

The delamination problem is one of the main reasons 
CMCs are not yet preferred for load bearing components 
in high performance applications such as turbine engines. 
Current designs require them to sustain mainly thermal 
loads. Even then, thermal gradients present severe delami- 
nation risks. Hutchinson and Lu [35#] have explored how a 
delamination crack interrupts heat flow, producing thermal 
stresses and crack tip stress intensities. The design limit 
implied for thermal gradients is quite stringent for realistic 
parameter values. 

The obvious way to suppress delamination is by in- 
corporating through-thickness reinforcement, for exam- 
ple, by stitching, 3D weaving, or inserting short rods. 
Very encouraging precedents exist in polymer compos- 
ites [36,37*]. While the processing challenges remain 
largely unaddressed by the ceramics community, data 
for other composite systems and theory lead the way. 
Through-thickness reinforcement bridges delamination 
cracks, often creating an analogue of the steady state 
matrix crack familiar from Mode I aligned loading of 
CMCs [38*]. A lower bound therefore exists for the critical 
load, regardless of delamination crack length. This allows 
simple design rules to be formulated. The minimum 
volume fraction of through-thickness reinforcement re- 
quired to suppress delamination is usually only a few 
percent ot less [39]. For the thermal gradient problem in 
particular, through-thickness reinforcement also transports 
heat across a delamination crack, reducing crack-induced 
thermal stresses [35*]. 

Thermal properties 
To minimize thermal stress, CMCs must have high 
thermal conductivity along with low thermal expansion 
and stiffness. Despite their importance in determining 
the performance of CMC structures, thermal properties 
have received relatively little attention, with a few notable 
theoretical   studies.  Models   have  been  developed   to 
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account for degradation in the thermal expansion and 
conductivity of cross-ply laminates in the presence of 
periodic matrix cracks [40,41*]. The models highlight the 
importance of the Biot numbers associated with fiber 
matrix interfaces, bridged matrix cracks in longitudinal 
plies, and unbridged cracks in transverse plies, along with 
the corresponding crack densities. The through-thickness 
conductivity can also be impaired by the presence of 
porosity. The effects of porosity and fiber waviness 
have been incorporated into a cell model for plain 
weave architectures [42]. As noted earlier, knowledge of 
the through-thickness thermal properties is particularly 
important in design because of the low delamination 
resistance of CMCs. 

A review of the models and the experimental work 
covering the past decade can be found in [43]. Despite 
progress in the development of models for the thermal 
properties of composites, a critical assessment of the 
models has been hampered by the lack of experimental 
data on the thermal properties of the constituents 
(especially the fibers) and the conductance of fiber-matrix 
interfaces. 

Creep 
Environment and phase stability aside, the design bounds 
of CMCs under aligned loads are set by creep. 

In glass matrix composites, creep occurs predominantly 
in the matrix. In unidirectional glass matrix composites, 
high creep rates in the matrix under transverse loads 
cause considerable creep anisotropy. In asymmetrically 
laid-up laminates or in the presence of stress gradients, 
creep anisotropy within plies will compromise dimensional 
stability [44]. In CMCs designed for higher temperatures, 
which have nonglass matrices, the situation is reversed. 
Polycrystalline fibers are fabricated with fine grains for 
strength, which are usually smaller than the grains in the 
matrix. It is therefore the fibers that creep first. Consider- 
able progress has now been made towards understanding 
the important consequences of this. Under sustained 
loads, matrix cracks, which would be arrested and remain 
stable at room temperature, exhibit stable, time dependent 
growth as fiber creep degrades the shielding effects 
of bridging fibers [45*-47*,48]. The steady state matrix 
cracking stress is no longer a lower bound for nonlinearity 
and ultimate failure [49]. Constitutive laws have been 
derived for bridging fibers that creep [50*,51] (as well 
as for creeping interfaces [52]), the incubation of crack 
growth from prior matrix flaws has been modeled [51], 
and crack growth trends have been detailed [53]. Global 
creep plasticity in the presence of multiple matrix cracks 
is now well understood [47*,50*]. Possible failure modes 
for 0/90"Iaminates with creeping fibers have been mapped 
in terms of fundamental material parameters [49,54]. 

Matrix cracking moderated by creeping fibers appears to 
be the critical failure path for CMCs in high temperature 

structural applications under aligned loads and when 
environmental degradation has been controlled. Current 
research focuses on notch sensitivity, where the combi- 
nation of matrix cracking and the stress concentration of 
the notch accelerate creep rupture of fibers [46*,55]. Fiber 
creep encourages the dominance of a single matrix crack, 
since it tends to relieve stresses on parallel matrix cracks 
which have initiated upon the first loading. This contrasts 
with cracking at room temperature, where many cracks are 
usually found, even next to very sharp notches [14]. 

The creep properties of the fibers are obviously critical 
in setting design limits and for determining lifetime. 
Much is yet to be understood. For example, some 
early experiments have shown challengingly complex 
relationships between morphological changes and creep 
rates in Nicalon™ fibers [56,57]; and both creep rates and 
strength are likely to be affected by interactions between 
fibers and either interphases or the matrix (Morscher 
GN, unpublished data). Developing creep resistant fibers 
and establishing confidence in their performance remain 
central problems in the CMC field. 

A peripheral field is developing in the potential (distant 
future!) application of SiC-based CMCs in fusion reactors. 
SiC is favoured for its low nuclear activation rate. Creep 
failure remains central, but is now coupled with radiation 
damage [58,59]. 

Oxidation embrittlement 
The problem of oxidation embrittlement continues to 
plague SiC-based CMCs. The embrittlement involves 
oxygen ingress through matrix cracks and the subsequent 
reaction of oxygen with both the fiber coatings and the 
fibers [60,61*]. It occurs as a so-called pest phenomenon, 
being worst at temperatures lower than those of intended 
service. At higher temperatures, oxidation products near 
the external surfaces tend to seal cracks and inhibit 
further oxygen ingress. (Yet high temperature intcrfacial 
degradation is still a potential problem [62].) The pest 
temperature can be determined by mechanical testing 
of tensile specimens subject to a temperature gradient 
along the specimen length: the gradient being produced 
by (localized) induction heating near the gauge center 
[61*]. Typically, the pest temperatures are in the range 
600-800*C. These temperatures are considerably lower 
than those usually used for high temperature testing of 
CMCs. Consequently, the embrittlement phenomenon 
can be readily overlooked. 

Additional complications arise because of the inherent 
instability of Nicalon™ fibers (the most common fiber 
currently used in CMCs). Experiments on SiC/Nicalon™ 
minicomposites (single tow composites) confirm that 
failure at elevated temperatures is, in some instances, 
dominated by the strength degradation of the fibers alone 
(Morscher GN, unpublished data). Composites containing 
Hi-Nicalon™ fibers with BN coatings appear to be more 
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stable, although a critical assessment of their performance 
under conditions that accentuate the embrittlement has 
yet to be performed. 

A rudimentary model has been developed to predict 
the rupture time under static loading [60]. More refined 
models are needed to take into account in a more 
realistic way the nature of the oxidation processes and 
the mechanisms responsible for fiber strength degradation. 
Some thermodynamic calculations have been performed 
to identify the dominant reaction products formed when 
BN and SiC are present with oxygen [63]. These have 
been limited to a temperature of 1100°C, considerably 
higher than the pest temperature. The kinetics and 
thermodynamics of these reactions and their effects 
on strength degradation in the pest regime are poorly 
understood. 

porous matrix that offers easy splitting paths [67",68]. 
(Other wood-like ceramics presented recently are really 
porous monoliths [69].) The propensity for splitting in 
CMCs can be enhanced by compressive residual stresses 
in the matrix [70]. Weak matrices and fiber entanglement 
within fiber bundles must also favour splitting [28]. 
Precedents in polymer and carbon-carbon composites 
suggest that especially effective toughening mechanisms 
for strong interface CMCs exist in textile composites 
[71]: fiber bundles fail as units, but neighboring bundles 
are protected from stress concentration by easy splitting 
between bundles; and 3D architectures bind failed fiber 
bundles together to large strains, giving exceptional values 
of work of fracture. Model brittle/brittle composites have 
been devised to demonstrate the benefits of interlocking 
3D architectures [72*]. 

The growing recognition of the prevalence of the em- 
brittlement phenomenon in virtually all SiC-based CMCs 
has led to the development of all-oxide CMCs. These are 
described in a subsequent section of this review. Barring 
a significant materials breakthrough, in cases where 
SiC-based systems must endure long term exposure, the 
design stress will have to be limited to the matrix cracking 
stress, as this represents the threshold below which 
embrittlement is suppressed. Two strategies for improving 
upon the cracking stress could be adopted: stronger, 
fully dense matrices, produced, for example, by melt 
infiltration, rather than chemical vapor infiltration (which 
usually results in large pores at which cracks initiate); or 
the use of hybrid laminates comprising alternating layers 
of fiber reinforced CMCs and fully dense ceramic sheets. 
The latter approach has been demonstrated [64], although 
it is expected to be limited in its use to components with 
relatively simple geometry or those which can be produced 
using a tile construction. 

Materials development 
The most eye-catching advance of the last two years 
in chemistry has been the advent of monazites and 
closely related structures, for example, xenotimes, as 
interface coatings and matrices in all-oxide composites. 
When prototypical LaP04 is deposited on AI2O3 fibers 
(with care to maintain accurate 1:1 La:P stoichiometry), 
a weak interface is formed which is extremely stable up 
to at least 1600°C [65,,,66*]. The processing required 
appears to be simple and reproducible enough and the 
base materials sufficiently low in cost that monazites may 
well eliminate degradation by interphase reactions as a life 
limiting process in all-oxide composites. If so, this is a 
major breakthrough. There is substantial new activity in 
monazite processing and applications. 

Tough oxide-oxide CMCs with strong fiber/matrix inter- 
faces have now also been demonstrated. Crack deflection 
characteristics like those seen in wood have been achieved 
without fiber/matrix debonding by bundling fibers in a 

Figure 2 

Bending fracture in an oxide-oxide CMC made from woven fiber tows 
with no fiber coating (strong interfaces). Note the irregular crack path 
and the extent of fiber bundle pullout, reminiscent of wood. (Courtesy 
BD Dalgleish, U Ramamurty, and CG Levi.) 

Wood-like fracture has now also been observed in 
weak-interface systems, including fibrous Si3N4-BN [73] 
and monazite composites. 

While the progress with all-oxide CMCs is exciting, their 
inherent disadvantages persist. Oxides generally exhibit 
higher thermal expansion and lower thermal conductivity 
than SiC-based CMCs and will therefore have to sustain 
higher stresses and temperatures in thermal applications. 
Moreover, the creep resistance of currently available oxide 
fibers is markedly inferior to that of SiC fibers (e.g., 
Hi-Nicalon™). 

Problems remain with chemical stability in carbon fiber 
CMCs [74-76] and oxide-oxide CMCs with BN interface 
coatings [77]. 
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Interfaces 
The mechanics of fiber/matrix interfaces and their relation 
to bridged cracks and thence the constitutive properties of 
CMCs are mature areas of research (e.g. [78]). One sub- 
stantial and still fairly original recent effort has addressed 
the role of interface roughness. Roughness has been 
measured on several typical systems [79] and its effect on 
fiber pullout relations has been measured and modeled 
[80*,81,82]. Quantitative predictions of roughness effects 
remain difficult, because the roughness is geometrically 
complex. In some cases, roughness appears to cancel the 
effect of Poisson's contraction of a loaded fiber [80*], 
validating the assumption of uniform interfacial friction 
stresses, which has been popular because of its simplicity. 
But generally, determining the relation between interfacial 
conditions and fracture behaviour probably always requires 
calibrating fracture experiments [83]. It has been proposed 
that roughness effects can be controlled by incorporating a 
compliant fiber coating to accommodate mismatch strains 
caused by unseated asperities [84-86]. 

Substantial rate effects in stress-strain curves have been 
measured in SiC/glass composites [87*]. The material is 
stronger and exhibits lower cracking densities at higher 
strain rates. These effects have been assigned tentatively 
to environmentally assisted matrix cracking (effective at 
low strain rates) and an increase in the interfacial friction 
stress with strain rate (see also the section on Fatigue). 

Since weak interfaces are favoured in CMCs, the interfa- 
cial debond energy is usually ignored in analyzing matrix 
cracking in CMCs. Including the interfacial debond energy 
in a model of fiber bridging has been shown to increase the 
steady state matrix cracking stress, but the effect is small 
for material parameters representative of current CMCs 
[88]. 

The protection by interfacial debonding of a fiber inside 
a cracked coating has been modeled [89]. Experimental 
work continues on interfacial characterization [90-92]. 
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1.   Introduction 

High strength can be achieved in ceramic fibers by manufacturing them as fine- 
grained polycrystals. Unfortunately, fine-grained fibers are prone to creep, 
because grain boundaries provide easy paths for diffusion. The matrix in many 
composites, whether formed by chemical vapor infiltration or by some other 
route, has a much coarser grain structure. Therefore, service life of CMCs 
reinforced by fine-grained fibers can be limited by fiber creep at temperatures 
where the matrix remains elastic. This paper is concerned with how fiber creep 
affects the failure by matrix cracking of a CMC under monotonic loading. 

Of primary interest is the passage to failure of 0/90° laminates, which offer 
at least a partial solution to the requirement of strength under transverse loads. 
The first damage observed in these materials under loads aligned with the 0° 
fibers is matrix cracking, which initiates in the 90° plies [1,2]. In many 
applications, failure may be considered to occur when these matrix cracks grow 
into through cracks by crossing the entire composite. 1) Stiffness critical 
applications. As long as matrix cracks remain comparable in size to the ply 
thickness, they cause a relatively minor reduction in the composite stiffness, 
because crack openings are limited by the crack length [3]. However, when 
matrix cracks traverse the entire composite, the separated pieces of matrix 
sustain average strains much lower than those in the fibers. The contribution of 
the matrix to the composite modulus is then severely degraded. 2) Hermeticity. 
As long as matrix cracks remain small and unconnected, they do not 
compromise the ability of the composite to act as a seal or liner, impermeable 
to gases. However, gas permeability obviously rises dramatically in the 
presence of through cracks. 3) Hostile environments. Matrix cracks admit 
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corrosive gases into the interior of the composite, where they attack fibers and 
the fiber/matrix interfaces. Composite strength and toughness can then fall 
away very quickly. Even small matrix cracks will introduce some corrosive 
gases. However, degradation may be limited to near-surface regions and 
relatively harmless until through cracks form, at which point failure will 
usually be imminent [4]. 

At room temperature, a lower bound exists to the stress at which cracks 
initiating in neighboring 90° plies link up to form through cracks. The bound 
obtains regardless of the presence of matrix flaws or flaws in clusters of fibers. 
The lower bound is a certain critical matrix cracking stress, ccrit, to be 
introduced below. While acrit varies to some extent with laminar dimensions 
and residual stresses, it is easily characterized for a single material and remains 
a fundamental, robust engineering parameter for failure at room temperature. 

At high temperatures where fibers creep, this useful simplicity is lost. The 
critical matrix cracking stress, which now takes a temperature dependent value 
<*crit(T)> is still a bound for rate independent cracking, i.e., the immediate 
response to load, but subcritical crack growth mediated by fiber creep will 
eventually lead to through cracks at stresses much lower than ccrit [5,6]. 
Lifetime becomes a function of temperature and stress, dictated by the rate of 
subcritical crack growth. This is the subject considered here. 

Fiber creep will also affect the residual ultimate strength of the composite. 
In applications where matrix cracking is not fatal per se, changes in residual 
strength must also be modeled. Some remarks will be made on the role of 
subcritical matrix crack growth on residual strength, but this issue will 
otherwise be left for future research. 

2.   Initial, Rate-Independent Matrix Cracking 

In 0/90° laminates loaded in the 0° fiber direction, the first manifestation of 
matrix cracking is tunneling cracks in the 90° plies [1,2]. The tunneling cracks 
initiate at intrinsic flaws in the 90° plies, which, being loaded transversely, tend 
to be weaker than the 0° plies. If any stable phase of matrix cracking occurs, it 
consists of the subsequent spreading of the cracks produced by tunneling into 
the adjacent 0° plies. The stable phase of growth occurs in the plane strain 
configuration indicated in Fig. la. Before discussing details of the initiation of 
matrix cracks by tunneling, it is helpful to examine the factors governing the 
stability and stress levels of the plane strain phase. 

Within the plane strain crack, the 90° ply acts effectively as a sharp notch 
or unbridged interval of width 2h90, while fiber bridging in the 0° plies acts in 
the intervals A90 < l*il < a to shield the crack tip, where xx and the crack length 
a are defined in Fig. la. A useful model of the relation between the bridging 
tractions p and the crack opening displacement 2« is [7,8] 
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2ß 
a-f)Ea 

%Efu 1% 
(1) 

where ris the interfacial friction stress (a function of temperature);/is the fiber 
volume fraction; R is the fiber radius; Ef and Em are the fiber and matrix 
moduli; and E = fE{ + (l-f)Em. While this relation is based on several 
assumptions that may not always be valid in a given CMC [9], it is likely to 
indicate trends quite well. 
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Figure 1. (a) Schematic of a plane strain crack spreading from a 90° ply. (b) Schematic of a 

tunneling crack propagating along a 90° ply and lapping into the adjacent 0° plies. 

Crack propagation is assumed here to occur when the crack tip stress 

intensity factor, K6p, takes a critical value Kc = yJET0 , where E' is an 

effective modulus for the laminate [3] and TQ is the effective fracture energy for 
the matrix crack in the 0° ply. This criterion implies that the matrix is an 
elastic, brittle material. 

Because p is an increasing function of u and crack propagation occurs at a 
nonzero value of K^, the steady state crack configuration can be attained for 
long bridged cracks where the critical stress for propagation, <%, becomes 
independent of the crack length [10]. This limiting stress is the matrix cracking 
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stress,   <Tmc.   It   can  be   readily   deduced   from  p(u)   by   evaluating   the 
complementary energy density [11]: 

<ymc = 
'6rf2EfE% 
R(l~f)2E2

m 

1/3 

(2) 

A characteristic length, the "bridging length scale," am, is associated with 
the traction law, p(u). For the model of fiber bridging underlying Eq. (1), it has 
the form [7,10] 

Axf2EfE
2 

m-ffE2 

-2/3 

(3) 

The stability of the plane strain phase of crack growth is determined entirely by 
the ratio, hgo/am, of the 90° ply half-width to the bridging length scale (Fig. 2). 
If hgofam < 8/37T2, Op(a) is a decreasing function; crack growth is unstable and 
always requires an applied stress cra > crmc. If h90/am > 8/3n2, crp(a) is an 
increasing function; crack growth is stable, commencing at some cra < <7mc. 
(The critical ratio 8/37C2 is found by equating the critical stress for a Griffith 
crack of size h90/am to the steady state matrix cracking stress, crmc.) 

Whatever the value of h90, <rp eventually reaches the matrix cracking stress, 
0mc. approaching close to it for crack lengths large compared to am. It is for this 
reason that <rmc serves as a design limit for forming long matrix cracks for any 
distribution of flaws. In current CMCs, am is typically - 0.1 mm at room 
temperature [10]. Thus, h90/am > 8/3n2 in most cases, so that crack growth is 
stable; while <rp = cmc for cracks - 1 mm or more. 

Now consider the events leading up to the propagation of a plane strain 
crack. The critical stress for tunnel crack propagation can be computed from 
energy considerations [12,13]. When the tunneling crack is long, the critical 
stress approaches a constant asymptote, o;, which is a function a^d) of the 
distance, d = a-h90, to which the tunneling crack laps into the adjacent 0° plies 
as it propagates along the 90° ply. This function depends on the 90° ply width 
and the ratio 77 = r90/r0 of the effective fracture toughnesses of the 90° and 0° 

plies. The minimum, cr,(nun), of <7t(a) is generally a lower bound to the initiation 
stress for matrix cracking. The initiation stress will be significantly higher than 
«T/

(min) only if intrinsic flaws are much less than the 90° ply width. 

Estimates for existing CMCs suggest this is not usually the case. The sum 
^90 + ^min. where ^min is the value of d corresponding to <Tt = cr,(rain), will be the 
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half-width of the plane strain crack created by the tunneling event. For rj < 1/2, 
4nin = 0; the tunneling crack is confined entirely to the 90° ply. Some nonzero 
increment in the applied load will be required before propagation of the newly 
created plane strain crack into the 0° plies occurs. For 77 > 1/2, d^n > 0; and in 
this case it can be shown that the tunneling crack simultaneously satisfies the 
criterion for propagation as a plane strain crack into the 0° plies [14,15]. Any 
increase in load after the tunneling crack has formed will be accompanied 
immediately by its broadening in the plane strain crack configuration [15]. 
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Figure 2. The critical stress for plane strain crack growth. 

The correct value of the toughness ratio, 77, is difficult to specify for some 
particular CMC from microstructural considerations alone. It will probably 
always have to be measured. However, the range 0 < 77 < 1 seems reasonable 
for composites with identical materials in the 0° and 90° plies [15]. 

One further condition must be satisfied for a stable phase of plane strain 
cracking to occur. The tunneling crack must not penetrate beyond the adjacent 
0° ply during its formation. If it does, it will enter new unbridged zones, i.e., 
the next 90° plies, the critical stress for its formation will drop, and the 
initiating crack will radiate unstably out in all directions without limit. This 
consideration imposes bounds on the minimum ratio, A0/A90. of the 0° and 90° 
ply half-widths for stable cracking, given a value of the toughness ratio, 77. A 
stability map can thus be created from solutions to the tunneling problem (Fig. 
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3). Figure 3 shows the approximate location of a typical SiC-SiC composite on 
the map, as well as the repositioning that would be expected if values of the 
micro-structural parameters / (volume fraction), R (fiber radius), T (friction 
stress), or r\ (toughness ratio) were halved. 
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Figure 3. Map showing the regimes where a phase of stable plane strain crack growth can follow 
crack initiation by tunneling. 

Figure 4 shows an alternative view of the role of ply widths in the cracking 
process. Here the boundaries of stable and unstable cracking are plotted out 
against the 90° ply half-width, /i90, for the fixed ratio h90/h0 = 1. One solid 
curve shows the critical stress for a plane strain crack (no bridging) of width 
2Ä90- The higher solid curve shows the stress at which the plane strain crack 
curve intersects the far boundary of the first 0° plies, i.e., Op(Ac>o + 2h0). All 
stresses are normalized against ojnc, the limiting critical stress for an infinite 
crack wholly contained in an infinite (hypothetical) 0° ply. The horizontal 
dashed lines show the stress values at which crack initiation will occur by 
tunneling for several values of the toughness ratio, 77. Here it is assumed that an 
initial flaw comparable to or slightly greater than the 90° ply widths pre-exists, 
so that the steady state tunneling stress, Ofc, is appropriately taken as the 
initiation stress. If only smaller flaws exist, the dashed line should be raised. 
Whether a stable phase of plane strain crack growth exists is determined by 
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where the horizontal dashed line meets the vertical line drawn at the given 
value of 90° ply width, hrfc^. This point is denoted P. 

If T) < 1/2 P will fall below the Griffith curve. In other words, after 
initiation by tunneling, a further load increment to <JG will be required before 
me S extends stably in plane strain. This stable growth will terminate when 
the applied load rises to <rp(/i90 + 2h)- 

If 1/2 < T)< ncrit, P will fall between the curve ap(h90 + 2h0) and the 
Griffith curve the case shown in Fig. 4). Here Tjcrit is the critical value of 7] for 
The ply width ratio unity in Fig 3. Plane strain crack growth will follow 
immediately after crack initiation upon further load increase. Once again, stable 
growth will terminate when the applied load reaches oftigo + 2/lo)- 

If n > T?crit, P will fall above the curve Op(/z9o + 2h0) and unlimited unstable 
cracking will accompany crack initiation. 

Thus <tihn + 2h0) should be identified with the engineering design limit 
Ocit Whatever the ply toughness ratio, any matrix cracks will arrest without 
exceeding the first 0° plies at all stresses below crcrit = Op(A9o + ZAo). 

3.   Subcritical Crack Growth Mediated by Fiber Creep 

Whenever crack arrest depends on fiber bridging, it will give way to subcritical 
crack growth at high temperatures because of fiber creep Thus, subcntical 
crack growth will fix a finite lifetime for all applied loads between <TG and o^ 
in Fig. 4. 

A bridging law for creeping fibers coupled to the matrix by friction takes 
the relatively simple form 

ü = 2Zp[p+ßp] (4) 

provided: there are no rate effects in the interfacial friction; ifiber creep * 
confined to the slip zone adjacent to the matrix crack by the stress 
concentration due to the crack; the matrix remains elastic; and fiber creep 
follows a linear law 

ef=äf/Ef+ß<J ' (5) 

where £f and of are the fiber strain and stress and ß is a creep coefficient [5]. 
For general fiber creep laws, an explicit relation between u and p and their time 
derivatives cannot always be derived; but this is unlikely to have any 
qualitative effect on the subcritical crack growth problem. 
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The condition for matrix crack extension is 

(6) 

where ATa is the applied stress intensity factor and ATb its reduction due to 
bridging. Consider the differential 

BK., dKti 

"p da dt (7) 
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Figure 4. Diagram defining OQ and dent, which bound the domain where life at high temperature 
will be determined by subcritical plane strain crack growth; and showing schematically the 
boundary between stresses for which fiber creep rupture follows subcritical crack propagation and 
vice versa. 

For stable rate-independent growth, which is the regime of interest, the first 
term must be negative. The second term is positive, reflecting the decay of 
bridging. Maintenance of the condition Eq. (6) implies d^tip = 0 and via Eq. (7) 
there follows a governing differential equation for the crack velocity, da/dt. 
Numerical methods for solving this equation may be found in Refs. 6 and 16. 
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Typical solutions for the crack velocity are shown in Fig. 5. Essential 
characteristics are as follows. 1) The velocity history can be divided into an 
initial deceleration transient; and a quasi-steady state at long crack lengths, 
defined by increasing insensitivity of da/dt to the initial conditions [6]. ("Quasi- 
steady state" is preferred to "steady state" because there is no invariant of the 
motion as a —» <» [16].) The deceleration transient is dominated by creep 
relaxation of fibers right next to the 90° ply, while the quasi-steady state is 
dominated by the loading history of fibers in a small, propagating zone just 
behind the crack tip [6]. 2) Unless the 0° ply width is much greater than the 90° 
ply width, crack propagation across the first 0° ply (whose limits are not 
marked in Fig. 5), which is followed by catastrophic cracking and therefore 
defines lifetime in the sense of this paper, is spent entirely in the deceleration 
transient. 3) The velocity and therefore the time to failure are very strong 
functions of the applied stress, with da/dt -» °° and lifetime tc -> 0 as cra -» 
<Tmc. 4) At long crack lengths, the crack continues to accelerate, but 
increasingly slowly. 
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Figure 5. Crack growth rate histories for cracks bridged by creeping fibers (from [6]). Curves are 
shown for three different 90° ply widths and three different applied stress levels. The initial crack 
length, which exceeds the 90° ply width for the cases shown, is defined by arrest of the rate- 
independent plane strain crack that grows from the initiating tunneling crack. The calculated 
crack growth is pursued well into hypothetically semi-infinite 0° plies. 
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4.   Other Aspects of Composite Failure 

4.1 FIBER FAILURE BY CREEP RUPTURE 

In the calculations of Fig. 5, fibers were assumed never to fail. In reality, they 
will fail by creep rupture if the fiber strain exceeds some critical value,' £^rit. 
Fiber failure may occur either after through cracks have formed or during the 
phase of subcritical crack growth. The former will always be the case for 
applied stresses, cra, sufficiently close to or above crmc, since crack propagation 
will then be either very fast or dynamic (depending or whether cra is above or 
below <Tcrit). Because subcritical matrix crack propagation rates are such strong 
functions of applied stress, there will be a transition to fiber failure during 
subcritical propagation as <ra is reduced. The velocity becomes vanishingly 
small as the applied load approaches the minimum, <rG, required for penetration 
of the initiating tunneling crack into the 0° plies. Lower velocities imply an 
increasing time for the accumulation of fiber creep strain; and the available 
time increases much faster than the fiber's creep rate declines [6]. New 
experiments are required to confirm this transition. 

4.2 CRACK PROPAGATION FOLLOWING FIBER FAILURE IN THE 
SMALL SCALE BRIDGING LIMIT 

In the domain where fiber failure occurs during subcritical crack growth, the 
surviving bridging zone will often be much smaller than other crack and 
specimen dimensions. Small scale bridging conditions will then apply. After 
some growth, the crack configuration will approximate a steady state 
configuration governed solely by the applied stress intensity factor, Ka. The 
velocity will approach a steady state value, Vss, which will be a function of K^ 
rather than directly of crack length. Complete solutions for this steady state 
have been presented in Ref. [17]. The solutions show many similarities to those 
for equilibrium craze zones in polymers, e.g., Refs. [18-21], but also some 
distinct features peculiar to the mechanics of brittle matrix composites [17]. In 
particular, crack growth occurs only when tfa exceeds Kc. At the lowest 
stresses, i.e., small ATa-ATc 

Vss~(Ka-Kcre% , (8) 

where f^ is the critical fiber strain. Small K2-Kc is probably the most 
important regime for the present context, since fiber failure during subcritical 
crack growth occurs only for stresses just above <rG, which means that K2 is 
near Kc. 

As illustrated by the asymptotic result Eq. (8), the crack velocity following 
fiber failure increases much faster than when the fibers remain intact (cf. Fig. 
5). For practical purposes, the onset of fiber failure in the wake of a subcritical 
crack could be considered equivalent to structural failure. 
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4.3 THE LIMITS OF SINGLE CRACK MODELS 

The constitutive model of Eq. (4) was derived for a single matrix crack and the 
resulting crack growth curves were all calculated in the absence of any stress 
redistribution effects that might arise from similar, nearby cracks. At room 
temperature, multiple matrix cracks are the common case; and rather than being 
noninteracting, their separation is in fact determined by marginal overlap 
between their interfacial slip zones. In a body with multiple matrix cracks, the 
overlap ought to be factored into the bridging law for creeping fibers. Multiple 
cracks should indeed be expected in a smooth specimen. But at high 
temperatures, recent experiments on notched SiC/SiC composites have shown 
that while multiple cracks do initiate, only one propagates very far, so that the 
problem reverts to that of a single dominant matrix crack [22]. Whether 
multiple or single cracks will occur at high temperatures in the presence of 
blunt stress concentrators remains a topic of current research. 

When arrays of cracks arise in the 90° plies in smooth laminates, crack 
interaction effects ought to be computed, e.g., by employing weight functions 
for arrays of cracks instead of those for single cracks [13]. Crack interactions 
will accelerate the formation of through cracks via crack coalescence. For an 
isolated matrix crack growing away from a 90° ply through neighboring 0° 
plies, unstable growth to a through crack will commence when it has reached 
the far side of the 0° plies. If two cracks grow towards one another into the 
same 0° ply from successive 90° plies, they each need cross only half the 0° ply 
before coalescence leads to catastrophic cracking; and their mutual interaction 
will accelerate even this diminished phase of subcritical crack growth. The 
boundary marked 0"crjt in Fig. 4 will move down, because of the stricter limits 
that must be satisfied for the initiation (tunneling) phase to terminate in crack 
arrest. How far down the boundary will move will depend on how the 0° ply 
half-width, ho, compares to the bridging length scale, am. If h(Jam » 1, the 
change will be slight, because the rate-independent plane strain cracking stress, 
<Tp(<z), will approach close to the limit cmc before crack interaction effects 
become significant. If A0 - am, the fall in ccrjt will be considerable, but readily 
calculated [13]. The failure map retains the same appearance. 

Even when multiple cracks exist, the trends and failure maps presented here 
will remain qualitatively true. The overlap of slip zones does not change the 
essential features of the bridging constitutive law, namely that p is an 
increasing function of u and decays with time. Furthermore, the law already 
contains implicit assumptions about micromechanics which are doubtful in 
detail. The constitutive law of Eq. (4) serves as a good guide to possible 
fracture behavior, with its details always understood to require empirical 
calibration, preferably using fracture data rather than micromechanical tests [9]. 
Whatever the exact form chosen for a bridging law like Eq. (4), once it is 
calibrated against experiments, it will probably yield accurate predictions for a 
wide range of other stress levels. 
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Hybrid laminar composites that are comprised of alternat- 
ing layers of ceramic sheets and fiber-reinforced ceramic- 
matrix composite (CMC) layers exhibit attractive mechani- 
cal properties, including a high first cracking stress and a 
high strain to failure. To achieve these properties, a strong 
bond must exist between the ceramic and CMC layers; 
otherwise, delamination will occur readily between the lay- 
ers. The present study focuses on the delamination resis- 
tance of such laminates at ambient and elevated tempera- 
tures. The delamination resistance of interfaces that have 
been subjected to mixed-mode loading has been measured 
for two different hybrid composites by using edge-notched 
flexure specimens. At low temperatures, delamination oc- 
curs by a process that involves multiple matrix cracking 
within the CMC layers normal to the fibers, followed by 
cracking of the matrix parallel to the fibers at or near the 
ceramic/CMC interface. The corresponding fracture ener- 
gies are typically in the range of -100-300 J/m2— 
comparable to the delamination resistance of the CMC it- 
self. At elevated temperatures, delamination occurs via 
cavitation and rupture of the matrix within the CMC layers 
at or near the ceramic/CMC interface, with an attendant 
loss in toughness (to -10-30 J/m2). The loss in toughness 
occurs most rapidly at temperatures that are close to the 
strain point of the matrix phase; this represents the life- 
limiting temperature for this class of composites. 

I.   Introduction 

HHYBRID laminar composites are fabricated by bonding to- 
gether alternating layers of a monolithic ceramic and a 

fiber-reinforced ceramic-matrix composite (CMC) at elevated 
temperatures, using the matrix phase of the CMC as the bond- 
ing agent. A variety of such composites have previously been 
fabricated and their properties have been characterized.1-2 A 
distinct advantage of this compositing scheme over conven- 
tional fiber CMCs is that the constituent layers can be first 
fabricated independently of each other, following a route that 
optimizes their respective mechanical properties. Subse- 
quently, the layers can be selected and combined in such a way 
that the ceramic layers impart a high cracking stress (provided 
that they are stiff and strong) and the CMC layers provide a 
high strain to failure and good damage tolerance. This process- 

is. N. Cox—contributing editor 

ing route can provide considerable flexibility and tailorability 
in mechanical properties. 

To obtain good structural properties in the hybrid laminates, 
the layers must be strongly bonded to each other. Laminates 
with weak interfaces are susceptible to delamination under out- 
of-plane tensile loading. Under in-plane loading, delamination 
may also occur, as a result of cracks that form in the monolithic 
ceramic layers perpendicular to the interfaces and deflect into 
the interfaces. Such effects are important both in uniaxial ten- 
sion and in bending. The problem of delamination in weakly 
bonded systems can be exacerbated in bend tests that are per- 
formed on relatively short beams, wherein the shear stresses 
between the outer and inner loading pins can precipitate shear 
delamination prior to tensile cracking of the layers. When de- 
lamination occurs, the layers bend essentially independently of 
each other, and each has a linear stress gradient, from tension 
to compression (provided that the factional resistance is small). 
The subsequent tensile failure occurs at a significantly lower 
load level. Such effects have been demonstrated at ambient tem- 
peratures in several different laminates1-3 and are expected to be 
equally important at elevated temperatures. 

Recent studies have demonstrated the importance of de- 
lamination in controlling both the flexural and tensile proper- 
ties of these laminates.2-3 At sufficiently high temperatures, 
their mechanical properties rapidly degrade. This degradation 
is manifested in the development of extensive delamination 
along or near the ceramic/CMC interfaces. Evidently, the de- 
lamination resistance is strongly temperature dependent. The 
purpose of the present study is to experimentally examine the 
temperature dependence of the delamination resistance of two 
different ceramic/CMC laminates and, in particular, to identify 
the critical temperature at which the degradation is most acute. It 
is demonstrated that the delamination resistance steeply decreases 
at temperatures that roughly correspond to the strain point* of the 
matrix material within the CMC layers of these laminates. 

n.   Experimental Procedure 

Two different hybrid laminates were studied. Both were fab- 
ricated with dense SiC sheets that were -0.5 mm thick (Hex- 
oloy SA, Carborundum Co., Niagara Falls, NY). The CMC 
layers5 were comprised of either Nicalon™ SiC fibers (Nippon 
Carbon, Tokyo, Japan) within a glass matrix (aluminosilicate 
glass, Corning 1723, Corning, NY) or of Nicalon fibers in a 
glass-ceramic matrix (calcium aluminosilicate glass-ceramic, 
Corning-CAS, Corning). Table I lists the strain, annealing, and 
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•Usually, the key changes in the flow characteristics of glasses are characterized 
by the strain point, the annealing point, and the softening point; these correspond to 
viscosities of 10145, 1013, and 107-6 P, respectively.4-5 Physically, the strain point 
represents the temperature below which the glass behaves essentially elastically, the 
annealing point is the temperature at which internal stresses are relieved within a 
period of minutes, and the softening point is the temperature at which the glass readily 
flows at low stresses. 

SCMC layers were supplied as unfired fiber-matrix prepregs (Coming). 
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Table I.   Critical Temperatures for CMC Matricesf 

Matrix 
Strain 

point (°C) 
Annealing 
point (°C) 

Softening 
point (°C) 

Glass (Coming 1723) 
Glass-ceramic (Coming 

CAS) 

-665 -710 -910 

-1140*       -1245*      Not available 
fData supplied by the manufacturer (Corning, Coming. NY). 'Apparent value 

based on beam-bending viscosity of bulk beams. 

softening temperatures of the glass and glass-ceramic matrix 
materials.* In one laminate system, the SiC sheets were bonded 
to the CMC layers by using the glass matrix of the CMC, and, 
in the other, the SiC sheets were bonded to the CMC layers 
with the glass-ceramic matrix of the CMC. Fabrication details 
and room-temperature properties of these laminates have been 
reported elsewhere.2 

The delamination resistance, Tic, was measured using edge- 
notched, four-point flexure tests.6-7 The laminates were com- 
posed of one unidirectional CMC layer that was sandwiched 
between two ceramic layers (Fig. 1(a)). This geometry was 
chosen because of its simplicity and because of the need to 
keep the loading pins in contact with an elastic (nondeforming) 
medium over the entire range of testing temperatures. Solutions 
for the delamination strain energy release rate for this three- 
layer configuration, as well as for the five-layer configuration 
(Fig. 1(b)), are presented in the Appendix. These solutions 
were obtained for well-developed delamination cracks for 
which steady-state conditions apply, as discussed elsewhere.6-7 

Delamination was assumed to occur along or at close proximity 
to the interface of the outermost ceramic layer with the first 
fiber-reinforced layer. The homogeneous ceramic layers were 
considered to be linear elastic and isotropic, with a Young's 
modulus Ec, a Poisson's ratio vc, and a thickness rc. On the 
other hand, the fiber-reinforced layers were considered to be 
linear elastic and orthotropic, with longitudinal and transverse 
moduli E\ and B2 (respectively), in-plane major and minor 
Poisson's ratios v^2 and vj, (respectively), and a thickness tr 

This thickness of the fiber-reinforced layers was set equal to st, 
where s is an arbitrary proportionality constant. 

As shown in the Appendix and Table A-I, the nondimen- 
sional delamination energy release rate is dependent on the 
bimaterial dissimilarity constant (X.) and the layer-thickness 
ratio (s) (as given in the Appendix, Eqs. (A-10) and (A-9), 
respectively). The systems that are under consideration are 
characterized by a moderate elastic dissimilarity (A. = 2.0). The 
normalized steady-state energy release rate is plotted against s 
for various X. values in Figs. A-2 and A-3. The calculations 

indicate that, for the systems that are under consideration, first- 
ply delamination is more likely to occur in the specimen con- 
figuration in which one fiber layer is sandwiched between two 
ceramic layers (Fig. 1(a)), relative to the configurations that con- 
tain a larger number of alternating layers, such as that which is 
shown in Fig. 1(b). The analysis that is presented in the Appendix 
neglects residual stresses, because their effects have been shown3 

to be negligible for the systems that are studied herein. 
Specimens for testing were cut from larger panels, parallel to 

the fiber direction. Typical specimen dimensions were -1.7 
mm thick x 3.6 mm wide x 50 mm long. One transverse face 
which exposed the CMC layer was polished to a 1 ^.m finish to 
facilitate observations of damage evolution, as described be- 
low. One of the SiC layers was notched using a diamond blade 
to a depth of-80% of its thickness (not shown in Fig. 1). Sharp 
precracks were introduced at the tips of the notches by loading 
the specimens in three-point bending at room temperature. 
These cracks did not deflect into the ceramic/CMC interface 
but did travel across the interface into the CMC layer a short 
distance (-10-20 jim) and then arrested (Fig. 2). For the sub- 
sequent calculations of the energy release rates, the crack depth 
was considered to be equal to the thickness of the outer SiC layer, 
which was measured with a micrometer prior to processing. 

The precracked specimens were subsequently loaded in four- 
point flexure, using inner and outer loading spans of 19 and 39 
mm, respectively. The tests were performed at temperatures 
ranging from ambient to 910°C for the glass-matrix composite 
and to 1350°C for the glass-ceramic-matrix composite. The 
effects of oxidation embrittlement that occur in Nicalon- 
containing CMCs8-1' were precluded by testing in a stagnant 
argon environment. Prior to testing, the furnace was evacuated 
to -5 x 10-6 torr (-6.7 x 10"4 Pa) and subsequently backfilled 
and flushed with argon three times. The tests were performed 
in a hydraulic testing machine (Model 810 with a Centorr 
vacuum furnace, MTS Systems, Eden Prairie, MN). Prior to load- 
ing, the specimens were heated at a rate of 10°C/min to the pre- 
scribed temperature and held at that temperature for 10 min. The 
majority of the tests were conducted at a crosshead displace- 
ment rate of 0.05 mm/min. Some of the elevated temperature tests 
were performed at displacement rates of 0.001,0.08, and 1.0 mm/ 
min. 

Damage evolution was monitored in two ways. At room 
temperature, the polished surfaces were viewed using in-situ 
stereomicroscopy. At high temperatures, it was accomplished 
by interrupting the tests, cooling the specimens rapidly to 
ambient temperature (>50°C/min), and examining them via 
either optical microscopy or scanning electron microscopy 
(SEM). After examination, the specimens were placed back 

Fig. 1.   Testing geometries for beams with (a) one fiber layer sandwiched between two dense ceramic layers (SiC for present experiments) and 
0?) two fiber layers sandwiched between three ceramic layers. 
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Precrack 

Fig. 2.   Micrograph of a precrack emanating from a notch and pen- 
etrating into the CMC layer. 

into the test fixture and loaded to a higher stress level at 
the same temperature. This procedure was repeated until the 
experiment was terminated. The tests were terminated when 
either the load attained a plateau (steady-state) level, indepen- 
dent of displacement, or the load decreased suddenly (the load 
decreases were associated with the formation of additional 
cracks in the SiC). There was no difference in the mechanical 
behavior of the interrupted and uninterrupted tests. Typically 
one to three tests were performed for each temperature and 
loading rate. The critical energy release rates that were asso- 
ciated with delamination were obtained from the plateau loads 
and the solutions for strain energy release rates (see Appendix). 
In some instances, a plateau stress was not obtained; instead, a 
second crack formed in the outer SiC layer, which caused a 
sudden load decrease. When this occurred, the test was termi- 
nated; if a delamination crack had formed prior to the load 
decrease, the peak load was used to calculate a lower-bound 
estimate of the steady-state delamination resistance. Changes in 
the Young's modulus of the CMC with temperature were ne- 
glected for these calculations. 

After testing, the specimens were examined via optical mi- 
croscopy and SEM. In some instances, the fracture surfaces 
were exposed by peeling away the top SiC sheet and examined 
via SEM. 

III.   Results and Observations 

(7)   Laminates with Nicalon/1723 Glass CMC 
Figure 3 shows the curves of nominal bending stress versus 

crosshead displacement for the edge-notched specimens. The 
curves generally exhibit (i) an initial linear elastic region, (ii) a 
transient region in which damage occurs ahead of the precrack 
and the response gradually softens (manifested in a decreasing 
tangent modulus), and (iii) a plateau (steady-state) stress at 
which extensive delamination occurs at or near the ceramic/ 
CMC interface. At room temperature, the initial nonlinearity in 
the stress-displacement response was associated with the for- 
mation of matrix cracks that were oriented roughly normal to 
the interface (Fig. 4(a)). These cracks were typically -200 u.m 
in length and spaced -50-100 u.m apart. At higher stress levels 
(approaching the plateau), delamination cracks were observed 
emanating from the precrack at or near the CMC/ceramic in- 
terface. In some instances, the delamination crack followed a 
somewhat tortuous path through the CMC layer, which resulted 
in some fiber bridging by inclined fibers (Fig. 4(b)). Similar 
bridging processes have been observed previously in CMCs 
under transverse Mode-I loading conditions.12 However, most 
of the delamination crack followed a path either along the 
interface or through the glass matrix near the interface (within 
-10 |jum). Subsequent examination of the delaminated SiC sur- 
faces revealed remnants of the glass, which was consistent with 

400 

Q?     300 

0.1 0.2 0.3 0.4 

Displacement (mm) 

Fig. 3.   Nominal-stress-versus-displacement curves for SiC/glass- 
CMC hybrid composites tested at the temperatures noted. 

Fig. 4. Delamination in the SiC/Nicalon 1723 glass laminate at room 
temperature, showing (a) accompanying Mode I cracking in the glass 
matrix and (b) matrix cracking combined with fiber bridging. 
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Fig. 5.   Low-magnification view of delamination at room tempera- 
ture. 

Fig. 7.   Damage within the bulk of the CMC layer at 865°C. 

the observations of the dominant crack propagating partially 
through the CMC itself rather than along the interface. The 
delamination resistance was in the range of 140-210 J/m2. 
These values are only slightly lower than those that were mea- 
sured using double-cantilever-beam specimens (in Mode I) of 
the CMC itself (-250 J/m2).12 

At 710°C (the annealing point of the glass), delamination 
proceeded in a similar fashion (Fig. 5), although the peak stress 
was considerably higher and no plateau was obtained, because 
of the formation of an additional crack in the SiC. The delami- 
nation resistance that was estimated from the peak load was 
-470 J/m2—approximately three times the corresponding 
room-temperature value. This increase is thought to be due to 
the reduction in the flow resistance of the glass and the result- 
ing increase in its toughness. Similar behavior was obtained at 
750°C, although delamination and cracking of the SiC both 
occurred at lower stresses. 

At 810°C, a well-defined plateau stress was obtained. In this 
case, there was no evidence of matrix cracks of the type that are 
shown in Fig. 4(a). Instead, delamination occurred by a process 
of cavitation and rupture through the glass matrix very near the 
ceramic/CMC interface (Fig. 6), with a resistance of only -20 
J/m2. Similar observations were made for the specimen that 
was tested at 910°C (the softening point of the glass), although 
there was more damage within the bulk of the CMC layer (Fig. 
7) and the delamination resistance was reduced even more (to 
-9 J/m2). 

Estimates of the steady-state delamination resistance, which 
were obtained from the peak loads, are plotted in Fig. 8. The 

data points that are accompanied by arrows indicate that a 
plateau stress had not been obtained during testing, which sug- 
gests that the actual toughness is somewhat higher. Evidently, 
the interfacial toughness first increases as the temperature in- 
creases, up to approximately the annealing point of the glass, 
but subsequently decreases at higher temperatures, as matrix 
cavitation becomes the dominant mode of failure. 

The effects of the imposed displacement rate (0.001, 0.08, 
and 1.0 mm/min) on delamination resistance were determined 
at 865CC, i.e., between the annealing and softening points of 
the glass matrix. Figure 9 shows the stress-displacement 
curves and the delamination resistances that have been ob- 
tained from these tests. In each of these cases, there was con- 
siderable damage in the bulk of the CMC, although failure 
ultimately occurred at or near the ceramic/CMC interface. The 
resistance increased approximately an order of magnitude as 
the displacement rate increased. 

(2)   Laminates with Nicalon-Glass-Ceramic CMC 
Figure 10(a) shows the stress-versus-displacement curves for 

the laminates that contain the Nicalon-CAS-glass-ceramic 
CMC. Similar trends were observed in the temperature depen- 
dence of the delamination resistance (Fig. 10(b)), although 
there were some subtle differences in the fracture characteris- 
tics. Notably, at low temperatures (<1000CC), delamination 
proceeded through the CMC itself, at a relatively large distance 
from the ceramic/CMC interface (-100-300 u.m) (Fig. 11). No 
steady-state toughness was obtained at these temperatures, 
probably because of the tortuosity of the crack path and the 
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Fig. 6.   Micrograph of cavitation near the SiC/glass-CMC laminate 
interface at 810°C. 

Fig. 8.   Variation in delamination resistance with temperature for the 
SiC/glass-CMC system. 
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Fig. 9. Effects of loading rate on (a) the nominal-stress-versus- 
displacement curves for the SiC/glass-CMC laminates and (b) the 
delamination resistance, at 865°C. 
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Fig. 10. Effects of test temperature on (a) the nominal-stress-versus- 
displacement curves and (b) the delamination resistance, for the SiC/ 
glass-ceramic laminates. 

occurrence of fiber bridging, which, in turn, result in an increas- 
ing fracture resistance with crack growth (i.e., /?-curve behav- 
ior). 

At temperatures in the range of ~1000°-1250°C, delamina- 
tion occurred "cleanly" along the ceramic/CMC interface, 
with minimal damage or cracking elsewhere in the CMC, and 
with some evidence of ductile ligaments spanning the crack. 
This material is likely the intergranular glass phase that is 
invariably present in glass-ceramic materials. Relatively well- 
defined plateau stresses were obtained. The corresponding de- 
lamination resistance was essentially constant in this tempera- 
ture range (-20-25 J/m2). Examination of the SiC surfaces 
after delamination revealed isolated islands of remnant CAS 
matrix that was bonded to the SiC (Fig. 12). Similar observa- 
tions were made on the specimen that was tested at 1350°C, 
although there was evidence of more cavitation damage within 
the CAS both near the SiC/CMC interface and within the bulk 
of the CMC layer (Fig. 13). This test was terminated because 
of the formation of a crack in the SiC on the compressive side 
of the specimen. The delamination resistance was estimated to 
be greater than -6 J/m2. 

The effects of loading rate on the delamination resistance at Fig. 11.   Delamination in the SiC/glass-ceramic CMC at 650°C. 
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a temperature of 1100°C were also examined. Qualitatively, the 
trends are similar to those of the glass-matrix system (Fig. 14), 
although two of the three tests were terminated because of 
cracking of the SiC. 

IV.   Discussion 

The temperature dependence of the fracture mode and the 
delamination resistance of the SiC/Nicalon 1723 glass CMC 
can be correlated with the changes in the viscosity of the glass 
matrix (Table I). The delamination resistance in this system 
decreases steeply, by more than an order of magnitude, at a 
temperature near the annealing point. Near this same tempera- 
ture, the fracture mode changes from one of brittle fracture of 
the glass matrix with attendant fiber bridging to one of local- 
ized flow, cavitation, and rupture within the glass near the 
SiC/CMC interface. Similar correlations exist for the laminates 
that contain the CAS-Nicalon CMC, although the transition 
seems to occur at a slightly lower temperature in relation to the 
strain point of the CAS. (The absolute temperature of the tran- 
sition in the CAS laminate is higher, because of the more- 
refractory nature of the glass-ceramic.) These materials contain 
some residual glassy phase at the grain boundaries, which 
seems to control the fracture resistance at higher temperatures; 
this is believed to be the cause of the lower transition tempera- 

ture in the CAS system. It is expected that the transition tem- 
perature could be elevated further through the use of a matrix 
material with a higher degree of crystallinity. In addition, the 
observed increase in crack-growth resistance with increased 
loading rate is consistent with reported observations of sub- 
critical crack growth that is caused by creep cavitation in glass 
ceramics,13 which, again, is consistent with the role of the 
viscosity of the matrix phase. 

Some of the edge-notched flexure tests did not yield defini- 
tive values for the delamination resistance, which is a result of 
cracking of the ceramic sheets prior to the attainment of a 
steady state. Such tests provide only a lower-bound estimate of 
the delamination resistance. The incidence of this cracking 
does not seem to correlate with the test temperature or other 
characteristics of the test procedure or material properties and 
is probably associated with the stochastic nature of the strength 
of the ceramic. 

The calculated values of delamination resistance are based 
on the implicit assumption that delamination occurs in a planar 
fashion at the SiC/CMC interface and that the zone of damage 
is confined to a small region that is adjacent to the interface. In 
some instances, the zone of microcracks extends -200 fim into 
the CMC; in others, the delamination crack deviates gradually 
from the plane of the interface, by as much as -300 \x.m. These 
effects may become important when the corresponding lengths 
become comparable to the layer thickness (-0.5-1 mm in the 
present experiments). The magnitude of those effects can be 
probed experimentally by measuring the delamination resis- 
tance in thicker test specimens. 

V.   Conclusions 

The delamination resistance of the hybrid laminates is sen- 
sitive to the matrix phase within the CMC, because this is the 
bonding agent between the ceramic and the CMC layers. For 

•-N 

Fig. 13.   Cavitation in the SiC/glass-ceramic-CMC laminate near the 
SiC/CMC interface at 1350°C. 

Fig. A-l.   Schematic of a symmetric half of delaminated composite 
beam subjected to combined axial loading and bending. 
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Table A-I.   Normalized Laminate Stiffnesses 

3035 

Laminate 
stiffness1' 

Configuration in Fig. 1(a) Configuration in Fig. 1(b) 
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the hybrid laminates that contain the glass-matrix CMC, the 
delamination resistance can be correlated with the viscosity of 
the glass matrix; it is relatively insensitive to temperature, up to 
the annealing point of the glass matrix, and subsequently di- 
minishes rapidly with further increases in temperature. For the 
laminates that contain the more-refractory glass-ceramic, the 
delamination resistance is maintained to higher temperatures, 
approaching the strain point of the glass-ceramic. Beyond these 
temperatures, the failure mode changes to one that involves 
flow, cavitation, and rupture, which results in substantial re- 
ductions in the delamination resistance. In this regime, the 
resistance is sensitive to the loading rate, which is a conse- 
quence of the viscoplastic nature of the matrix phase. 

APPENDIX 

The steady-state strain energy release rate, Gss, for a bima- 
terial specimen that contains one layer of each material is found 
elsewhere.3,7 Solutions for two other beam geometries that are 
of greater interest to the present work (see Fig. 1) are presented 
here. The Gss value is obtained from the difference in the 
strain-energy densities ahead of and behind the crack tip, using 
a cutting and pasting operation to simulate virtual crack exten- 

sion (Fig. A-l). It is expressed as the sum of the strain energy 
release rate functions that are produced by the applied moment 
(GM), the axial forces (GN), and the coupled effects of the two 
(GNM). The results are 

S2h2 cos2 $ 
Gss = ^= (GN tan2 <D + GNM tan $ + GM)    (A-l) 
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the graph. 
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Here, Ec and vc are the Young's modulus and Poisson's ratio, 
respectively, of the precracked (ceramic) layer; P is the plateau 
load, / the distance between the inner and outer loading points, 
b the specimen width, and h the specimen height. The thickness 
of the uncracked and cracked layers are, respectively, ht and 
h2, and tc and fr are the thickness of the ceramic and CMC- 
reinforced layers, respectively. M is the applied moment, and N 
is the applied normal force; the normalized stiffnesses—A,,, 
Bn, and Du—for the two regions that are illustrated in Fig. 
A-l are found in Table A-I. Some typical results are plotted in 
Figs. A-2 and A-3. 
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ABSTRACT 

This paper focuses on the limit stress conditions of metal matrix composites 

reinforced with weakly-bonded continuous fibers subject to general biaxial tensile 

loading normal to the fiber direction. The study is performed using unit cell models, 

with the fibers being treated as either perfectly rigid or perfectly compliant. The cells 

are first analyzed using finite element methods (FEM) and the results used to 

construct yield surfaces in stress space. A simpler analytical model based on 

net-section yielding is also developed and the results compared with the ones 

obtained by FEM. Though the latter approach provides a reasonable first order 

estimate of the limit stress, it generally underestimates the values obtained from the 

FEM calculations: a result of stress gradients acting along the failure plane. The 

effects of stress gradients are incorporated into the net-section yielding model 

through an analytical solution based upon the slip line field around a circular hole. 

This approach yields analytical predictions which are generally in very good 

agreement with the FEM results. 
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1.        INTRODUCTION 

The plastic flow and creep properties of continuous fiber-reinforced metal 

matrix composites (MMCs) exhibit varying degrees of anisotropy, depending on the 

properties of the constituents (matrix, fibers and interfaces) and the fiber 

architecture. In unidirectionally reinforced materials, the properties measured along 

the axis of the fibers are usually dominated by the fibers and are superior to those of 

the matrix alloy alone (Jansson et al., 1991; Weber, et al., 1994). In contrast, under 

transverse or shear loading, the properties are matrix-dominated. Even in the best of 

circumstances, wherein the fibers are well-bonded to the matrix, the contributions 

from the fibers are relatively small except at very high fiber volume fractions 

(> 50%). This type of behavior is exemplified by the Al/AI2O3 and Al/B systems 

(Jansson and Leckie, 1992). In systems comprised of SiC fibers in Ti alloys, the 

interfaces between the fibers and the matrix are weak because of the presence of C 

coatings. In these systems, the transverse and shear properties fall below those of the 

matrix alone (Jansson et al., 1991; Jansson and Leckie, 1994; Weber et al, 1995). 

Typically, the ratio of axial to transverse tensile strengths in Ti/SiC composites at 

ambient temperature is ~ 4. At elevated temperatures, the matrix strength decreases, 

causing an increase in the anisotropy of the composite strength (Weber et al., 1995). 

The strength anisotropy has important implications regarding the design of 

structural components using MMCs, particularly under conditions of multiaxial 

stress. Indeed, this anisotropy represents one of the most severe drawbacks 

associated with this class of composite and may limit the use of MMCs in structural 

applications. 

The transverse flow and creep properties of well-bonded fiber-reinforced 

MMCs under uniaxial loading have been studied by numerous investigators 

through calculations based on finite element methods (FEM) (Teply and Dvorak, 
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1988; Brockenbrough and Suresh, 1990; Brockenbrough et al., 1991; Nakamura and 

Suresh, 1993; Zahl et al., 1994; Du and McMeeking, 1994). A relatively 

comprehensive series of numerical results is documented in Zahl et al. (1994). One 

of the key results emanating from these studies is that, at sufficiently large strains, 

the ratio of the composite flow stress, c?c (e), to that of the matrix, am (e), reaches a 

constant (steady-state) value, dependent only of the fiber volume fraction, f, and the 

hardening characteristics of the matrix. The transient response preceding this 

steady-state persists for strains that are typically in the range of ~ (1-5) e0/ with e0 

being the yield strain of the matrix. For modest values of f (< 0.35), the steady state 

strength ratio is given approximately by ac (e)/om (e) = 2/V3 = 1.15; the main role of 

the fibers is to constrain the matrix from contracting along the fiber direction, 

leading to conditions of plane strain. Substantial elevations in strength are only 

obtained for high fiber volume fractions (f > 0.5). 

The influence of thermal residual stress on the transverse tensile response of 

Well-bonded systems has been examined also (Nakamura and Suresh, 1993, Böhm 

and Rammerstorfer, 1991). A general result is that the steady-state strength ratio, 

<*c(e)/Om(e )/ is independent of the thermal stress; the thermal stress only influences 

the transient response. The magnitude of the transient effect depends on the 

thermal misfit strain and the flow and hardening characteristics of the matrix. 

Limited numerical studies have been conducted for materials with weak 

interfaces, subject to uniaxial tensile loading transverse to the fibers (Nimmer et al., 

1991; Gunawardena et al., 1993). In these cases, the composite strength is less than 

the yield strength of the matrix alone. The effects of thermal residual stress and 

frictional sliding along the fiber/matrix interfaces have also been considered. In 

cases where the matrix thermal expansion coefficient, ocm, exceeds that of the fibers, 

<Xf (a characteristic of most MMCs), the interface experiences a residual normal 

compression following cooling from the processing temperature. Consequently, the 
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remote stress required to separate the interface is higher than that in a residual 

stress-free composite. Comparisons of the FEM calculations with experimental data 

on a Ti/SiC composite indicate that the condition for interface separation is one in 

which the local normal stress across the interface becomes positive (Gunawardena et 

al., 1993). This result suggests that the interfaces have essentially zero normal 

strength and the fibers are held in place by the residual compression stress acting 

across the interface. Clearly the residual stress alters the initial transient part of the 

stress-strain response, but, as in the case of well-bonded systems, the steady-state 

plastic response is unaffected. Frictional sliding at the interface appears to play only a 

minor role in the flow response. FEM calculations have been conducted using a 

Coulomb friction law to characterize the sliding resistance of the interface and 

indicate that the flow response of the composite remains essentially unchanged for 

friction coefficients in the range, (J. = 0 to 1 (Gunawardena et al., 1993). 

The models of the flow response of continuous fiber composites have been 

limited to uniaxial loading. In practice, however, these materials are expected to be 

subjected locally to multiaxial stress states, even in components that are nominally 

loaded principally in just one direction. The multiaxiality arises because of stress 

concentrations, such as those present at regions where the components are joined to 

monolithic alloys. To motivate the current work, one specific example is cited. 

Ti/SiC composites are being considered for use in actuator piston rods for aircraft 

engines. The rods are comprised essentially of a hollow thin-walled tube of 

unidirectionally reinforced Ti/SiC. The tubes are clad on both the inside and the 

outside with layers of monolithic Ti, and the ends of the tubes are attached to 

monolithic Ti end fittings of rather complex shape. Though the loads are applied 

principally along the tube axis, there is some degree of bending, which causes tensile 

hoop and radial stresses near the ends of the tube (Du, et al., 1996). An 
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understanding of the effect of this triaxiality on the flow and fracture response of 

Ti/SiC composites is needed in order to produce reliable designs. 

The current work represents an initial attempt at developing models and 

solutions for plastic failure of weakly-bonded fiber reinforced MMCs subject to 

multiaxial stress states. In this paper, the scope is restricted to biaxial tensile loading 

transverse to the fiber direction in unidirectional materials. Fully multiaxial (3D) 

conditions have yet to be addressed. The emphasis is on the plastic limit stress 

conditions; no consideration is given to other failure modes. As such, the predicted 

failure stresses are expected to be upper bounds to the stresses that composites may 

support in actual components. The effects of the fiber volume fraction, the spatial 

arrangement of the fibers, and the direction of loading in relation to the fiber 

arrangement are considered. The results are based on both FEM and analytical 

calculations. The results are used to construct the yield surfaces using stress 

parameters that characterize the mean and deviatoric components of the stress state. 

2.        CELL MODELS AND CONSTITUENT PROPERTIES 

The flow properties of the composites are examined through the analysis of 

unit cell models. For this purpose, the fibers are assumed to be distributed on a 

periodic array and the loading directions, relative to the directions characterizing the 

symmetry of the array, are prescribed. The periodic idealization is a good 

representation of most Ti/SiC composites wherein the fibers are distributed 

uniformly through the matrix; it may be a less accurate representation of composites 

produced by melt infiltration because of the more random fiber distribution. 

Figure 1 shows the periodic nature of the fibers in a typical Ti/SiC composite. 

The present study focuses on unit cells derived from the hexagonal and 

square fiber arrangements. Two typical unit cells and finite element grids for a fiber 
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volume fraction, f = 0.35, are shown in Fig. 2. Similar cells were constructed for fiber 

volume fractions of f = 0.25 and 0.50. This range of volume fractions brackets the 

range found in all Ti/SiC composites of commercial interest. Uniaxial tension was 

simulated by imposing uniform tensile displacements on one pair of cell faces and 

calculating the corresponding average surface traction, either Oxx or ayy. The faces 

normal to the applied stress were required to remain planar in order to maintain 

compatibility with adjacent cells. Moreover, plane strain conditions were imposed 

in the z-direction (along the fiber axis). For the square array, tensile loading on 

either pair of cell faces yields identical results because of the symmetry of the cell. In 

contrast, for the hexagonal array, the two loading configurations yield different 

results, since the axes that characterize the symmetry of the cell do not coincide with 

the principal loading axes. The two loading configurations are subsequently 

distinguished from one another by the directions of loading in relation to the 

closed-packed direction (CPD) of the fibers; in Fig. 1(b), loading along the x-axis is 

normal to the CPD whereas loading along the y-axis is parallel to the CPD. 

Biaxial loading was simulated by prescribing the boundary displacements on 

the two orthogonal directions to be proportional to one another and subsequently 

calculating the limiting values of the two stress components, axx and Cyy. The ratio 

of displacements was varied in order to obtain a range of stress ratios, cXx/c»yy. 

Most of the calculations were based on the assumption that the matrix is 

elastic, perfectly-plastic, with Young's modulus, Em, Poisson's ratio, V, and yield 

stress, c0 and yield strain, e0 = Co/Em. In some cases, the matrix response was 

assumed to follow the Ramberg-Osgood flow law. For uniaxial tensile loading, this 

law is given by 

e/e0   =   O/CJ0 + a(o/c0)
n (1) 
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where o and e are the axial stress and strain, respectively; a is a numerical 

coefficient, taken to be 3/7; n is the hardening exponent; c0 is a reference stress and 

e0 is the corresponding reference strain. Eqn. (1) was generalized to multiaxial stress 

states using small strain J2 flow theory. For deformations much greater than the 

elastic ones, the stresses and strains at a material point increase in proportion to 

each other under proportional loading and the resulting solution is equivalent to 

that for J2 deformation theory. The resulting strain field is then the same as the 

strain rate field for a creeping material with a power-law creep exponent of n. This 

equivalence implies that the solutions obtained for power-hardening are also 

applicable to power-law creep (Odqvist, 1966). 

The fibers are treated in one of two ways: either perfectly rigid (with a Young's 

modulus, Ef = 00) or perfectly compliant (Ef = 0). The latter assumption is equivalent 

to treating the fibers as holes. For cases where the fibers are rigid, the interface is 

assumed to have zero normal tensile strength. 

In the light of the introductory comments regarding the absence of any effects 

of thermal stress on the limit stress conditions, the thermal stresses are not 

incorporated into the analysis. Despite this simplification, the present results for the 

transient response are expected to be applicable at high temperatures and low 

stresses, wherein the thermal stresses have adequate opportunity to relax through 

matrix creep. In contrast, the predicted transient at low temperatures may be subject 

to some uncertainty, depending on the magnitude of the thermal misfit strain. 

Finite element calculations were performed using a commercial code, 

ABAQUS (1994), on a Convex mainframe. The matrix was discretized using 

isoparametric second-order hybrid elements with reduced integration in order to 

avoid problems of mesh-locking associated with incompressible deformation. For 

the cases where the fibers were perfectly rigid, interface elements were introduced to 

simulate the contact between the matrix and the fibers. 
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The cells were also analyzed using an analytical approach based on net-section 

yielding. For this purpose, the potential planes along which yielding can occur were 

first identified from the FEM results. Figs. 1(c) and (d) show schematics of the 

approximate locations of these planes within the unit cells. For the hexagonal array, 

three such planes exist, denoted by A, B and C. Analogous planes exist for the square 

array, denoted D, E and F, though only two of them are unique (D and E). The 

average normal and shear stresses acting on each of these planes were then 

calculated in terms of the applied stresses assuming that the stresses are distributed 

uniformly along these planes. Finally, the local stresses were combined with the 

Mises yield criterion for plane strain conditions in order to obtain the limiting 

values of the remote stress components. This approach generally leads to 

conservative estimates of the limit stress; stress gradients along the expected failure 

planes cause an elevation in the limit stress. This elevation can, in turn, trigger 

plastic failure along other planes. 

The effects of the stress gradients have been incorporated explicitly into the 

net-section yielding model using the slip-line solution for yielding ahead of a 

circular notch. The same result is obtained by considering the expansion of a 

thick-walled circular cylinder subject to uniform biaxial tension. It will be" 

demonstrated that the results predicted by the modified version of this model are 

generally in excellent agreement with the FEM results. This approach is described in 

further detail in Sections 3 and 4. 

3.        FEM RESULTS 

3.1      Uniaxial Tension 

Figure 2(a) shows the transverse stress-strain curves for composites with 

three different fiber volume fractions in a hexagonal array, with the load applied 
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parallel to the CPD. The solid and dashed lines are the results obtained for 

composites with rigid and perfectly compliant fibers, respectively. The 

corresponding results for the hexagonal array loaded normal to the CPD and the 

square array are given in Figs. 2(b) and (c), respectively. For the hexagonal arrays, the 

limiting strength values are only slightly higher for composites containing rigid 

fibers than for those containing perfectly compliant fibers (by ~ 2-14%), whereas for 

the square arrangements they are essentially independent of the fiber modulus. 

A summary of the uniaxial limit strengths is presented in Fig. 3. The results 

indicate that the strengths decrease approximately linearly with increasing fiber 

volume fraction and reach values of ~ (0.2-0.3) at a volume fraction, f = 0.5. For the 

hexagonal arrays, the limit strengths are higher when the load is applied normal to 

the CPD than when it is applied parallel to the CPD. This trend is contrary to the one 

observed for composites with strongly bonded interfaces, wherein the transverse 

strength is found to be nearly independent of the loading direction (Zahl et al., 1994). 

To gain further insight into the effects of the fiber modulus and the fiber 

arrangement on the flow response of the composite, the evolution of matrix 

plasticity within the composite has also been calculated. Figure 4(a) illustrates this 

behavior in a composite with rigid fibers in a hexagonal arrangement loaded 

normal to the CPD and a fiber volume fraction of 0.35. Figure 4(b) shows the 

corresponding results for a composite with perfectly compliant fibers. In both cases, 

plasticity initiates in the equatorial regions around the fibers. As the applied strain is 

increased, the plastic zone initially spreads in both the radial and hoop directions 

around the fibers. For the composite with perfectly compliant fibers, the plasticity 

subsequently spreads along the ligament joining nearest-neighbor fibers, at an angle 

of ~ 30° to the loading direction. Once this ligament is completely yielded, the limit 

stress is attained. In the composite with rigid fibers, the plasticity initially spreads in 

a similar manner. However, the additional constraint associated with the fiber 
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causes the plasticity to also spread in the direction normal to the loading axis, 

ultimately forming two plastic ligaments: one at 30" and the other at 90° to the 

loading axis. The same trends in the evolution of the plasticity were obtained for the 

other fiber volume fractions, f = 0.25 and 0.5. For the composites loaded parallel to 

the CPD, similar trends were again observed, with the exception that the plasticity 

remains confined to the ligaments between nearest-neighbor fibers, at 60° to the 

loading direction (Fig. 4(c)); it does not spread extensively along the plane normal to 

the loading direction. 

Typical results for the square fiber arrangements are shown in Fig. 4(d). The 

plasticity again initiates in the equatorial regions around the fibers. For the high 

volume fractions, f = 0.35 and 0.5, it subsequently spreads normal to the loading 

direction, forming a plastic ligament between adjacent fibers. Essentially identical 

behavior is obtained for both rigid and perfectly compliant fibers, in accord with the 

strong similarities in the limit stresses presented in Fig. 2(c). For the lowest volume 

fraction, f = 0.25, the plasticity initially spreads along the normal plane in a similar 

fashion. However, as the tip of this plastic zone approaches the cell boundary, a 

plastic zone develops and spreads along the cell diagonal (at ~ 45° to the loading 

direction). Plastic failure ultimately occurs along this inclined plane. 

In a subsequent section, an analytical model of net-section yielding is 

developed, based upon the assumption that the stresses are uniformly distributed 

along the potential failure planes. To assess the validity of this assumption, the 

distributions in stress have been calculated using FEM. Some representative results 

for the square fiber array with Ef = <» are shown in Fig. 5. For the two highest 

volume fractions, f = 0.35 and 0.5, the matrix separates from the fibers along the 

equatorial plane (x = 0) and, consequently, the transverse stress, Oyy, in the matrix at 

this point is zero and the longitudinal stress is equivalent to the plane strain flow 

stress, (2/^3) a0. However, at positions away from the interface along the plane x = 0, 
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the transverse stress is tensile, increasing approximately linearly with position, y/R. 

In order for the effective stress to remain at the flow stress, the corresponding 

longitudinal stress axx along this plane follows a similar increasing trend with y/R. 

Similar results are obtained from both f = 0.35 and 0.5. For f = 0.25, the interface 

along the equatorial plane remains intact at the limit stress. At this point, the 

transverse stress in the matrix is compressive (~ -0.15 a0) and thus the longitudinal 

stress is below the plane strain flow stress: ~ (2^3 - 0.15) c0 » c0. However, both cxx 

and Cyy increase with the distance, y/R, in essentially the same way as they do for 

the higher volume fractions. One notable exception is the slight decay in axx and cyy 

at positions close to the cell boundary (y/R = 1.8). This decay is associated with the 

small elastic region along this plane. As noted earlier, plastic failure ultimately 

occurs along an inclined plane, at ~ 45° to the loading direction, not along the x = 0 

plane. 

The separation of the interfaces at the two highest fiber volume fractions and 

the stress gradients along the x = 0 plane are associated with the imposed boundary 

conditions along the cell edges, y = W. Had this boundary been allowed to remain 

traction-free, the matrix would have contracted laterally near the equatorial plane 

due to the yielding. The imposed condition that the cell boundary remainplanar 

results in the development of transverse tensile stresses near the equatorial plane. 

However, since the average normal traction on this boundary must be zero, 

balancing compressive stresses are also developed at other points on the boundary. 

Examples of these stress distributions for the square fiber arrays are shown on 

Fig. 5(c). It is of interest to note that the peak values of the transverse tension are 

comparable to the corresponding values of the longitudinal limit stress, indicating a 

rather high degree of stress triaxiality. 

For the hexagonal fiber arrays, the stress distributions are somewhat different. 

When the load is applied parallel to the CPD, the stresses remain relatively uniform 
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along the failure plane (at ~ 60° to the loading direction). This behavior is shown by 

the contour maps of axx and Gxy in Fig. 6. The results obtained for the hexagonal 

array loaded normal to the CPD were similar to those for the square array with the 

lowest fiber volume fraction. Notably, stress gradients were present along the 

yielded portion of the normal plane (A), though failure ultimately occurred on the 

inclined plane (B). The stresses along the failure plane were relatively uniform, as 

for the case where the load is applied parallel to the CPD. 

Limited numerical studies have also been conducted for composites with a 

strain-hardening matrix. Figure 6(a) shows the effects of the hardening exponent, n, 

on the stress-strain curves for composites with rigid fibers in a hexagonal 

arrangement loaded normal to the CPD. In this case, the flow stress of the 

composite, ac (e), is normalized by the flow stress of the matrix alone, crm (e), at the 

same applied strain. The strength ratio, c?c (e)/am (e), asymptotically approaches a 

constant value at strains of the order e/e0 £ 20-50. The asymptotic values of the 

strength ratio are plotted against the hardening exponent in Fig. 6(b) for composites 

with three different fiber volume fractions. Evidently the asymptotic stress ratio is 

very insensitive to n when the fibers are perfectly compliant and essentially 

independent of n when the fibers are rigid. Moreover, the differences between 

perfectly compliant and rigid fibers decrease with increasing n; for n > 0.2, the two 

limit stress ratios are within - 2-3% of one another. 

The trends in the limiting strength ratio with the hardening exponent differ 

from the results obtained for well-bonded fiber and particulate composites. In the 

well-bonded systems, the limiting strength ratio increases substantially with n; for 

example, in the case of spherical particulate reinforcements, it increases from 1.28 to 

1.67 as n is increased from 0 to 0.2 (Brockenbrough and Zok, 1995). Similar increases 

are obtained in the well-bonded fiber-reinforced systems (Zahl et al., 1994). 

Moreover, the magnitude of the strains required to obtain the limiting strength are 
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very much higher in the composites with weakly bonded interfaces. Typically, in the 

well-bonded systems, the asymptotic level is reached within e/e0 ~ 2-5 (depending 

on f and n): about an order of magnitude smaller than the values obtained for the 

weakly-bonded systems. 

3.2      Biaxial Tension 

A series of FEM calculations were performed for biaxial loading of the square 

and hexagonal fiber arrays with f = 0.35. The limiting values of the two stress 

components are plotted in Fig. 8. Also shown for comparison is the yield surface for 

a monolithic metal under plane strain loading conditions, given by 

°xx     -    <*yy     =    ±  —  <*o (2) 

For the square array, the composite yield surface is symmetric about the line 

<*xx = tfyy because of the symmetry of the cell. In the regime o\x, ayy > 0, yielding 

occurs when either cxx or ayy reaches a critical value, ~ 0.46 o0, independent of the 

other stress component. As the stresses become negative, the shape of the yield 

surface changes. In the limit wherein both oxx and ayy are « 0, the yield surface 

approaches that of the monolithic metal (given by Eqn. 2). In this limit, similar 

results would be expected for well-bonded fiber composites. Yield surfaces with 

similar shapes have been developed for the compaction of an array of plastic 

cylinders, though the stresses are compressive and the cell geometry is different 

(Akisanya and Cocks, 1995). 

The yield surface for the hexagonal array exhibits several slightly different 

features, (i) It is not symmetric about cxx = Oyy. (ii) The composite is somewhat 

stronger in the x-direction (normal to the CPD) than in the y-direction. (iii) There is 
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only a small portion of the yield surface that does not depend on both stress 

components (top right corner of Figure 8). 

Figure 9 shows the stress distribution along the failure plane in the square 

array for uniform biaxial tensile loading. Evidently the distributions are almost 

identical to those obtained for uniaxial loading (compare with Figs. 5(a) and (b)). 

These similarities can be rationalized in terms of the transverse stresses that 

develop under uniaxial loading, as described previously. These similarities are 

manifested in the insensitivity of the limiting values of one of the applied stresses, 

cxx, to the other, o*yy, as seen in Fig. 8. 

4.        NET-SECTION YIELDING MODEL 

4.1      Uniaxial Tension 

The FEM calculations show that the limit stresses are insensitive to the 

modulus of the fibers. For fiber volume fractions typical of most Ti/SiC composites, 

f ~ 0.35, the difference in strengths between the rigid fibers and the perfectly 

compliant ones is negligible for the square fiber array and only ~ 6-7% for the 

hexagonal arrays. The results indicate that the composite behaves essentially the 

same as a matrix containing an array of holes. This result, in turn, suggests that the 

limit stress may be calculated on the basis of net-section yielding, neglecting the 

contributions from the fibers. Such an approach is developed here. 

The situation in which the fibers are in a hexagonal array and loaded normal 

to the CPD is considered first (Fig. 1(c)). From the geometry, the cell height, H, and 

the cell width, L, are related to the fiber volume fraction, f, and the fiber radius, R, 

through the relations 
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2R 
IV3   K 

8    f (3) 

and 

2R f24   f (4) 

In this configuration, plasticity tends to develop along one of two planes: the first at 

~ 30° to the loading direction (B in Fig. 1(c)), and the other along the equatorial 

plane normal to the loading direction (A). The limit strength of the composite is 

then expected to be the lower of the stress levels required to cause yielding along 

these two planes. In calculating the critical stress levels, it is assumed initially that 

the stresses are distributed uniformly along each of the two planes, with no stress or 

strain concentrations arising from the holes. 

Across plane B, both a normal tensile stress, a^, and a shear stress, TB, are 

present. The relations between these stresses and the applied stress, a~x, are obtained 

from equilibrium considerations. The relations are 

Tg_   _   cos(7t/6)    _     ^ 
aB COS(TC/3) (5) 

and 

W3 7i      TB 43 
24 f 

h/3 7C_ 

6   f 
+ <*B 

' 6   f 
(6) 
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Under plane strain conditions, the effective (Mises) stress, Oß, corresponding to 

these two stresses is [10]: 

17 

<*B   =   J| CT!+3T| (7) 

Yielding occurs when aB = a0. Combining Eqns. (5) through (7) with the yield 

criterion gives the limiting value of the remote stress, a^: 

8 
(8) 

Plane A is subjected only to a tensile stress, G&, given by 

<*A    _ 1-. 
2V3f 

% 

-l 

(9) 

The effective stress on this plane is 

V3 
(10) 

Combining Eqns. (9) and (10) with the yield criterion gives the limiting stress as: 

'XX       _ s i-j2Vsi (11) 

Comparison of Eqns. (8) and (11) shows that the limit stress predicted by Eqn. (11) is 

always the lower of the two; the ratio of the stresses is 4/^13« 1-H- 
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The same approach is used to evaluate the limit stresses for hexagonal fiber 

arrays loaded parallel to the CPD (along the y-direction). The two potential failure 

planes are B and C. The limit stresses for yielding along these two planes are 

yy 8V7 
21 

l-j2Vsl 
7T 

(Plane B) (12) 

and 

'yy   _ 2V3 1-. 2V3 f 
7t 

(Plane C) (13) 

The value predicted by Eqn. (12) is always the lower of the two. 

For the square fiber array, the cell dimension, W, is related to R and f through 

2R 4 Vf (14) 

The limit stresses are 

_   ayy 4A/15 

15 V 7C 
(Plane E) (15) 

and 

_   °yy 2V3 -4 (Planes D and F) (16) 
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where sections D, E and F are indicated on Fig. 1(d). Eqn. (16) predicts the lower of 

the two limit stress for all values of f. 

The limit stresses predicted by Eqns. (8), (11), (12), (13), (15) and (16) are plotted 

as a function of fiber volume fraction in Fig. 10. (These predictions are labeled as 

"Simple Net-Section Model" to distinguish them from the modified version which 

is described below.) For comparison, the results obtained from the FEM calculations 

are also shown. 

For the hexagonal array loaded parallel to the CPD (Fig. 10(a)), the net-section 

prediction is in excellent agreement with the FEM results: the differences being < 2% 

for both f = 0.25 and 0.35 and ~ 9% for f = 0.5. The net-section model also correctly 

predicts that plastic failure should occur along the inclined plane, B. These 

correlations are consistent with the uniformity in the stresses across this plane, 

shown in Fig. 6. 

For the hexagonal array loaded normal to the CPD (Fig. 10(b)), the net-section 

model predicts failure along plane A; in contrast, the FEM results indicate that it 

occurs along plane B at a somewhat higher stress. This discrepancy appears to be 

associated with the stress gradients along plane A, leading both to an elevation in 

the flow stress and a transition in the failure plane from A to B. Indeed, the 

net-section predictions for plane B are in very good agreement with the FEM results. 

(The effects of the stress gradients on the limit stress for plane A are presented later.) 

For the square array, the net-section model predicts failure along the normal 

planes, D or F, depending on whether the load is applied in the x- or y- directions. 

The FEM results indicate that, for f = 0.35 and 0.5, failure does indeed occur along 

these planes, though at stress levels that are higher than the net-section predictions. 

The FEM results also indicate, that for f = 0.25, failure occurs along the inclined 

plane, E, rather than D or F. The net-section prediction for plane E at this volume 

fraction is in good agreement with the FEM result. 
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The stress gradients acting along the planes normal to the loading direction 

have previously been analyzed for the case of a rectangular bar containing a circular 

hole of radius, R, subject to uniaxial tensile loading (Hill, 1989; Kaliszky, 1989). In 

this case, the slip-line field around the hole consists of a series of logarithmic spirals. 

Within the plastic zone, the stresses acting across the plane of minimum cross 

section are 

wyy   = ^Ai(r/R) (17) 

and 

^(l + Ai r/R) (ig) 

where r is the radial distance measured from the center of the hole and x represents 

the direction of loading. Figure 5 shows comparisons between these predictions and 

the ones obtained from the FEM calculations for the square fiber array subject to 

uniaxial loading. Good correlations are obtained for the two highest volume 

fractions. For the lowest volume fraction, the two follow similar increasing trends 

with y/R, though the analytical results are somewhat higher than the numerical 

ones. This discrepancy is due to the contact of the matrix with the fiber along the 

equatorial plane and the resulting compressive stress acting normal to the interface. 

The solutions for the stress gradients can be used to modify the predicted 

limit stresses. This is accomplished by multiplying the results in Eqns. 11 and 15 by a 

numerical coefficient, X, defined by the ratio of the average normal stress, 6, acting 

along the failure plane perpendicular to the loading direction (obtained from the 
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slip-line solution) to the plane strain yield stress, (2 V3/3)) a0- In general, X is given 

by 

X   = 
V36 V3 
2^   =   2(r^KtGe9(r)dr (19) 

where rD is the limiting distance, taken as W for the square array, and either H or L 

for the hexagonal array depending on the loading direction. X is obtained by 

substituting Eqn. (17) into (19) along with the appropriate value of r0, and then 

combining the result with the relationship between the cell dimensions and the 

fiber volume fraction (either Eqn. (3), (4) or (14)). For the square array, the result is: 

X   = < 
£n 

2\f, 

1- 
R_ 
W ^i 

(20) 

For the hexagonal array loaded normal to the CPD, it is 

X   = *"1 Ax 
V3rc 
6f 

1- 
R 2^3 f 

71 

and for the hexagonal array loaded parallel to the CPD, it is 

(21) 

Ai 

X   = 

N/3 7C 

2f 

1- 
2V3f 

371 

(22) 
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Figures 10(b) and (c) show the predictions obtained from the modified 

versions of the net-section yielding model (incorporating the stress gradients). The 

solutions are obtained by multiplying the right side of Eqn. 15 by X in Eqn. 20, and 

multiplying the right side of Eqn. 11 by X in Eqn. 21. For the hexagonal array 

(Fig. 10(b)), the modified model predicts a limit stress for plane A which is higher 

than that needed for yielding along plane B, in accord with the FEM prediction that 

failure occurs on plane B. For the square array, the modified model yields 

predictions for yielding along plane E that are in excellent agreement with the FEM 

results for volume fractions at which failure does indeed occur along E (f = 0.35 and 

0.5); for f = 0.25, it predicts a limit stress for E that exceeds that for planes D or F and 

thus correctly predicts the transition in the failure planes as the fiber volume 

fraction is reduced. 

4.2      Biaxial Loading 

The net-section yielding model has been extended to calculate the limiting 

yield surface of the composite under biaxial tensile loading. For this purpose, two 

stress parameters are introduced: a mean stress, am, and a deviatoric stress, ACT, 

defined by 

s    (<*xx+ayy)/2 (23) 

and 

ACT   S   (cyxx-CTyy)/2 (24) 
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where axx and ayy are the stresses applied along the directions indicated in Fig. 1. 

These parameters have previously been used by others to describe the yield surfaces 

for porous materials (Akisanya and Cocks, 1995; Sofronis and McMeeking, 1992). 

The combinations of Ac and am that lead to plastic collapse are calculated using the 

approach outlined above. Notably, the potential critical planes are identified, the 

average normal and shear stresses acting along each of these planes is evaluated and 

the stresses then combined with the Mises yield criterion. For planes oriented 

normal to either the x- or y- directions, the factor, X, is also incorporated. (It can be 

shown readily that the stress gradients that occur around a cylindrical hole under 

uniform biaxial tension are identical to the ones described by Eqns. 17 and 18 for 

uniaxial tension, with ayy replaced by the hoop stress, aee, and cxx replaced by the 

radial stress, CTrr- Consequently, X is expected to be independent of the imposed stress 

state.) The limit surface is obtained from the inner envelope of the yield surfaces 

calculated for all planes. 

For the square fiber array, yielding can occur on planes D, E or F (Fig. 1(d)). 

The normal and shear stresses on plane E are 

=      g*x+gyy    =      gm (25) 
E 2(l-V2f7i)      1-V2f7n 

and 

-      qxx~qyy     _        Aq (7f.. 
TE
 " 2(i-VS7^ " (i-V2£7£) { } 

and the corresponding yield condition is 
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Planes D and F are subjected only to normal stresses, given by 

and 

The yield conditions are 

and 

24 

(«   \2 

\aoJ 
+ 2AaT 

= |(i-2Vf7^) f (27) 

cD   = 
\-l4ilK (28) 

GF     = 
crm-Aor 

l-2Vf/K 
(29) 

Aa =   + 2A/3 
X[l-2Vf7n] (Plane D) (30) 

'm ^   =   ±MX[l-2Vf7^] (PlaneF) (31) 

Eqns. (27), (30) and (31) are plotted in Fig. 11(a) for a fiber volume fraction, f = 0.35. 

The inner surface along which yielding is predicted to occur is indicated by the 

shading. The FEM results are also shown in this figure. 

Since the model neglects the contributions from the fibers, it is expected to be 

valid only when both oxx and Cyy are positive. This condition can be written in 

terms of the two stress parameters as 
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-cm   <   ACT   <   cm (32) 

This result is plotted on Fig. 11 as two dotted lines. Within this regime, yield occurs 

on planes D or F, depending on whether ACT is negative or positive; the stresses 

required for yielding on plane E are always higher and thus are not attained. 

Yielding on plane E is predicted to occur when 

<Wo0 * 0.18 (33) 

Despite the fact that this range is outside of the one defined by Eqn. (32), the 

predictions remain in good agreement with the FEM results, suggesting that the 

model is accurate even when one of the stress components is somewhat negative. It 

should also be noted that, because of the symmetry of the unit cell, the yield surface 

is symmetric about the line ACT = 0. 

As noted earlier, the yield surface becomes insensitive to CTm when 

CTm/CTc « 0. In this limit, the yield surface is expected to be essentially the same as 

that of a well-bonded fiber composite neglecting the differences associated with 

sliding vs. non-sliding interfaces. Yield is then predicted to occur when | 2ACT | 

reaches the plane strain flow stress of the matrix, (2/^3) CT0, such that 

ACT 

<*o 
=   1/V3   -   0.577 (34) 

Following the same approach, the limit surfaces for the hexagonal fiber arrays 

have also been obtained. The relevant results are 
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+ ACT =   + 2^3 xll-sjlSi/iz] (35) 

for plane A; 

ACT \
2 

K°o 2CT OJ 

+   3 'ACT^2 

\CoJ 
=   |(l-^2V3f/7:)2 

(36) 

for plane B; and 

'm ACT   =   +2V3 
X{l-^2f/s[3n) (37) 

for plane C. 

The yield surfaces for f = 0.35 are plotted in Fig. 11(b), along with the FEM 

results and the lines defined by Eqn. (32). For this fiber array, the axes that define the 

symmetry of the cell are different from those defining the principal stresses; 

consequently, the yield surfaces are not symmetric about ACT = 0. The analytical 

results predict failure along plane B for most stress combinations, the exception 

being the region in the top right corner of the yield surface where failure occurs 

along plane A. The agreement between the analytical and numerical results is good 

for cases where ACT/CT0 is not zero. When it is zero (i.e. uniform biaxial tension), the 

analytical result for yielding along plane B is ~ 20% less than the numerical one. 

This discrepancy arises because, under uniform biaxial loading, stress gradients 

develop along plane B; indeed, in this limit, they are identical to those along plane 

A. As a result, the limit stress is underestimated. The more relevant result in this 

limit is the one for yielding along plane A, incorporating the effects of stress 

gradients. In this case, the analytical result is essentially identical to the numerical 
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one. In its present form, the net-section yielding model does not take into account 

changes in stress gradients with stress state: the gradients are either neglected 

altogether (as they should for yielding along inclined planes under near-uniaxial 

loading) or are included for all stress states (for planes oriented normal to the 

principal loading directions). The shear stresses acting along the inclined planes 

effectively eliminate the stress gradients. However, under uniform biaxial loading, 

these shear stresses vanish and the stress gradients become important. 

The effects of fiber volume fraction on the yield surfaces for both types of fiber 

arrays are shown on Fig. 12. In these cases, only the inner yield surfaces from the 

analytical solutions are shown. The yield surfaces for the various volume fractions 

nest inside one another, expanding as f decreases. In the limit of f -» 0, the yield 

surface approaches that of a monolithic metal under plane strain conditions. It 

should be emphasized that the accuracy of the yield surfaces that lie outside the 

range -am < a < c?m may be questionable in some cases. Furthermore, for the 

hexagonal arrays, the predictions along &G/a0 ~ 0 are expected to be lower bounds to 

the actual limiting stresses. 

5.        CONCLUDING REMARKS 

The limit stresses for biaxial loading of weakly-bonded unidirectional fiber 

composites have been evaluated and used to construct limit surfaces in an 

appropriate stress space. The limit stresses depend somewhat on the fiber array as 

well as the directions of loading but are insensitive to the fiber modulus. The 

limiting conditions are obtained when plastic failure occurs along the most 

favorably oriented plane within the matrix. Transitions in the failure plane can 

occur with changes in the fiber volume fraction or imposed stress state. Such effects 

can be accurately described through the use of a net-section yielding model, 
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incorporating the stress gradients that occur along planes oriented perpendicular to 

the principal loading directions. The attractive features of the net-section yielding 

model include its simplicity as well as the potential for extending it to other 

situations, including other fiber volume fractions and fiber arrangements, without 

recourse to the numerical calculations. 
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FIGURES 

Figure 1    Typical finite element grids for cells with a fiber volume fraction, f = 0.35: 
(a) square arrangement, (b) hexagonal arrangement. In (a), the load is 
applied parallel to the close-packed direction (either the x- or y- 
directions). In (b), the load is applied either parallel (y) or perpendicular 
(x) to the close packed direction, (c) and (d) show cell dimensions and the 
potential planes along which plastic failure can occur. 

Figure 2   Stress-strain curves for composites with (a) a hexagonal array of fibers 
loaded normal to the CPD, (b) a hexagonal array of fibers loaded parallel to 
the CPD and (c) a square fiber array. The solid lines represent the results 
for perfectly rigid fibers and the dashed lines are for perfectly compliant 
fibers. 

Figure 3   Trends in the uniaxial limit stress with the fiber volume fraction for both 
hexagonal and square fiber arrangements, where the fibers are (a) rigid, or 
(b) perfectly compliant. 

Figure 4   Evolution of matrix plasticity (indicated by shaded regions) with applied 
strain, for (a), (b) hexagonal arrays loaded normal to the CPD, 
(c) hexagonal array loaded parallel to the CPD, and (d) square array. In all 
cases, the fiber volume fraction is 0.35. 

Figure 5    Distributions of (a) transverse and (b) longitudinal stresses along the 
failure plane (x = 0), and (c) transverse stress along the cell boundaries 
(y = w). 

Figure 6   Contour maps showing distributions in the longitudinal and shear 
stresses, c»yy and axy for a hexagonal fiber array loaded parallel to the CPD. 
Note the uniformity in these stresses across the ligament joining the two 
fibers. 

Figure 7   Effects of the matrix hardening exponent on (a) the stress-strain response 
and (b) the asymptotic strength ratio, for composites with rigid fibers in a 
hexagonal array loaded normal to the CPD. The stresses are normalized by 
the flow stress of the matrix alone at the same applied strain. 

Figure 8    Limit stresses for biaxial loading: (a) square and (b) hexagonal fiber arrays. 

Figure 9   Stress distributions along failure plane (x = 0) for uniform biaxial tensile 
loading of a square fiber array with f = 0.35. Also shown for comparison 
are the predictions based on the uniform expansion of a cylinder (Eqns. 17 
and 18). 

Figure 10 Comparisons of analytical predictions of limit stresses for uniaxial 
loading with those obtained using FEM. 
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Figure 11 Limiting yield surfaces for composites with f = 0.35: (a) square and 
(b) hexagonal fiber arrays. 

Figure 12 Effects of fiber volume fraction on the yield surfaces for (a) square and 
(b) hexagonal fiber arrays. 
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The intermediate-temperature oxidation embrittlement, or 
"pest," effect found in ceramic-matrix composites (CMCs) 
is shown to have features analogous to stress corrosion 
cracking. The behavior involves crack growth upon oxida- 
tion of the fibers or the fiber coatings to form an oxide that 
weakens the fibers. It has reaction- and diffusion-controlled 
regimes. The former occurs at low stresses. The latter 
occurs at higher stresses. It is controlled by oxygen ingress 
through the matrix cracks. There is also a crack growth 
threshold. Expressions for the crack velocity above the 
threshold are derived as well as the stress dependence of the 
rupture life. 

I.   Introduction 

CERAMIC-MATRIX composites (CMCs) with non-oxide fibers 
are subject to a "pest" phenomenon. This is manifest as an 

embrittlement that predominates at intermediate temperatures 
between about 500° and SWC.1"* It occurs at stresses above 
that needed to cause matrix cracks (typically, 0-100 MPa).10 It 
is caused by oxygen ingress from the atmosphere through the 
cracks. The oxygen locally reacts with the fibers. The reaction 
product weakens the fibers and may also modify their debond- 
ing and friction characteristics. The weakened fibers respond to 
the stress concentration at the perimeter of unbridged crack 
segments,"12 causing the cracks to extend. This process repeats 
until the remaining fibers are unable to support the load and the 
composite fails. Models describing this embrittlement process 
are developed. The models predict the time-to-failure in terms 
of nondimensional parameters. 

The embrittlement phenomenon occurs under both static and 
cyclic loading, at temperatures around the "pest" temperature, 
Tp. Some experimental results presented in other articles9-13 

(Figs. 1 and 2) are summarized in order to motivate the concepts 
used in the present analysis. Measurements performed on a 
unidirectional MAS/SiC composite in air at 750°C provide a 
vivid demonstration of the phenomenon. When this material is 
subject to cyclic stress (amplitude, Ac = 235 MPa), and stress 
ratio (minimum/maximum), R = 0.05, fracture occurs after 
— 1200 cycles. The corresponding rupture time is 43 min. In 
contrast, the same material tested at room temperature, subject 
to the same loads, had an infinite life. The fracture surface after 
testing at 750°C exhibits substantial embrittlement, character- 
ized by a region around the periphery —0.7 mm wide in which 
the fibers fail along the plane of the matrix crack (Figs. l(a,b)). 
Fiber pullout occurs within the central (unembrittled) region, 
comprising about half the cross section. The net-section stress 
on this central region at the onset of fracture is comparable to 

M. Thouless—contributing editor 
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the ultimate tensile strength of the pristine composite,13 indicat- 
ing that the fiber strengths in this region have not been altered 
by oxidation. 

When experiments are performed subject to static load, at a 
stress equivalent to the peak in the cyclic test, rupture occurs in 
41 min, essentially identical to that found in the cyclic tests. 
Similar embrittlement features are observed on the fracture 
surface (Fig. 2). The similarities in the rupture times and in the 
embrittlement features suggest that fracture is controlled by 
the peak applied stress with no intrinsic cyclic mechanism. 

500um 

(a) 

(b) 
Fig. 1. Scanning electron micrographs of fatigue fracture surface of 
MAS/SiC: (a) inclined overview; (b) close-up of the fracture surface 
within the embrittled region. 
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(a) 

(b) 
Fig. 2.    Fracture surface of specimen subjected to static loading: 
(a) overview; (b) close-up of fiber in embrittled region. 

Consequently, the embrittlement models emphasize the kinetic 
effects that occur under load. They are expected to apply to 
both static and cyclic loading. 

II.   Preliminaries 

The models to be developed are based on the above experi- 
mental findings. They invoke a degradation zone that spreads 
through the composite, resulting in a time-dependent tensile 
strength, once the stress has exceeded that needed to introduce 
matrix cracks, reminiscent of stress corrosion cracking.I'"? 

The discontinuous nature of the matrix cracks in CMCs'"",n 

dictates the actual mechanisms. In 0/90 CMCs. the cracks are 
discontinuous because they form first in the 90° plies and only 
partially penetrate the 0° plies (Fig. 3). In unidirectional CMCs. 
crack interactions cause them to be discontinuous.""'' Degra- 
dation occurs according to two rate-limiting phenomena:'"15 

(i) When the gas flow within the cracks is relatively rapid, all of 
the fibers bridging those cracks connected to the surface oxidize 
and weaken simultaneously. When they have degraded suffi- 
ciently to fail, the surface cracks extend across the weakened 

New Bridging 
Zone 

Bridging 
Zone 

Fiber' 
Failure 

/°o° /boo i 
X°o0 b, 

log (a) 

Stage D 
Diflusion - Controlled 

Crack 
Growth 
Stages 

Fig. 3.   Schematic 
embrittlement. 

logK 

illustrating    the    mechanism    of    oxidation 

zone and form new crack segments bridged by pristine fibers 
(Fig. 3). This new bridged region again gradually weakens and 
fails. The process continues in a manner resembling stage I. 
reaction-controlled, stress corrosion cracking."" (ii) When the 
narrow matrix crack opening inhibits the ingTess of oxygen and 
the egress of the gaseous reaction products (typically CO:). 
oxygen gradients develop along the crack. The outmost fibers 
then oxidize and degrade most rapidly. Thereafter, the fibers 
fail sequentially, resulting in a fiber degradation front that pro- 
gresses into the composite. This process is similar to stage II. 
diffusion-controlled, stress corrosion cracking'* (Fig. 3). Anal- 
yses of each of these phenomena are presented and a critical 
assessment made of the parameters that specify the regions 
of dominance. 

In some cases, the oxygen can slowly penetrate the material 
through narrow connecting channels along gaps in the fiber 
coatings (Fig. 4). This process acts in concert with (i) and (ii) 
by uniformly degrading the interior fibers and allowing the 
composite to fail prematurely. This case is not incorporated in 
the present models. 

The overall model is schematically illustrated in Fig. 3. The 
matrix cracks have an opening displacement governed by the 
applied stress.'" The fibers are initially intact. With time, oxy- 
gen from the environment diffuses through the cracks and initi- 
ates oxidation of the fibers. The oxide thickness increases with 
time and partially consumes some of the fibers. This process 
reduces the strength of the fibers?' It mav also affect the friction 
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stress at the interface. There is a stress concentration on the 
fibers at the perimeters of the unbridged cracks.12 When the 
weakening diminishes the fiber strength below this concen- 
trated stress, the fibers fail. The process then repeats and the 
unbridged cracks continue to »row. Eventually, the composite 
fails. 

There are three principal phenomena to be modeled: (a) the 
reduced strength of the fibers with oxide layers, (b) the stress 
concentration in the fibers at the perimeters of unbridged crack 
segments, and (c) the oxygen concentration within the matrix 
cracks, which is coupled with the thickness of the oxide reaction 
product on the fibers. The philosophy is to use the simplest 
level of analysis that provides physically realistic results. Then, 
analytic expressions can be provided in terms of nondimensional 
parameters with coefficients and exponents to be calibrated by 
experiment. The basic concept is illustrated for non-oxide fibers 
in an oxide matrix, but could be readily extended to non-oxide 
matrices. 

2347 

(3) 

where H is the parabolic rate constant, which would not nor- 
mally be steady-state, because X0 can vary with time and fiber 
location in the matrix crack. 

The formation of the oxide weakens the fibers. The oxide 
layer is assumed to behave as a surface Haw.23 When the oxide 
thickness becomes large enough to cause weakening, the scal- 

rd. 

III.   Fiber Weakening 

An initial matrix crack is introduced upon the application of 
a stress o\21 A portion of this crack, length a, is considered to 
be unbridged, whereas another segment, length b, is bridged by 
intact fibers (Fig. 3). For a 0/90 composite,"the initial value a0 

would be the ply thickness, h. For a unidirectional composite, 
a0 would refer to a manufacturing flaw. Upon subsequent iso- 
thermal exposure at temperature T, oxygen reacts with each of 
the bridging fibers to form an oxide reaction product, thickness 
d. For diffusion-controlled oxide growth, exemplified by SiO, 
on either SiC or Si3N4 fibers, d has the temporal form22 

d = ClD0cXo/d (1) 

where DQ is the oxygen diffusivity in the oxide, X0 is the mole 
fraction of oxygen in the atmosphere at the fiber location, c is 
the molar gas concentration, and Ü is the molecular volume of 
oxygen. The diffusivity D0 is Arrhenius and has the form 

D0 = DSexp(-ß0//?gT) (2) 

where Q0 is the activation energy for oxygen diffusion through 
the oxide, D% is the reference diffusivity, and Rg is the gas 
constant. For a uniform oxygen concentration, this oxide thick- 
ness can be re-expressed as 

Fig. 4.    Schematic of oxygen ingress between matrix cracks, through 
ihe fiber coatings. 

ing relation for the fiber strength 5 should then be S ~ 1/ 
The consequent strengths are 

S = S0       (t< t0) (4a) 

S = S0(f0/f)"
4       (r>r0) (4b) 

where t0 is the time taken for the fibers to be weakened below 
their initial strength, S„. This occurs when the oxide thickness 
is d„, related to r„ by Eq. (3). Note that t0 decreases as T 
increases, in accordance with the temperature dependence of 
the diffusivity, D0. 

IV.   Stress Concentrations 

The incidence of fiber failure is governed by the magnitude 
of the concentrated stress, or,, acting on the row of fibers at the 
edge of the unbridged segment of the matrix crack. This stress 
is given by (Fig. 5)"12 

with 

i\ = 

JT+yf 

3irß/2£fEaT 
(1 -f)2Ei,AR<y 

(5) 

where T is the interface friction stress, R is the fiber radius./is 
the fiber volume fraction, Ef and Em are Young's moduli of the 
fiber and matrix, respectively, E is the longitudinal composite 
modulus, and A is an anisotropy factor of order unity." The 
coefficient ß is a large-scale slip coefficient:'2 ß « 1/3 for 
typical/and E,/Em. 

V.   Oxide Thickness 

As oxygen from the environment diffuses through the cracks 
and initiates oxidation of the fibers, there is a time-dependent 
distribution of the oxygen mole fraction X0 along the crack, 
J:.

24
-
23
 There is a corresponding distribution of the thickness d of 

the oxide layers on the fibers (Fig. 6). These problems are 

■ Line Spring 

Fig. 5.   Stress concentration, CTC, on fibers at perimeter of unbridged 
crack, length o."'- 

227 



2348 Journal of the American Ceramic Society—Evans et at. Vol. 79, No. 9 

coupled, such that X0(xJ) and d{x,t) must be solved simultane- 
ously. The problem is inherently transient and has no steady 
state.' The solution depends upon the pressure and composition 
of the gas within the crack. Conservation of the oxygen passing 
along the crack requires that2' 

d(cX0)    d(cX0v) ,dj0   +  + — 1-   (E0 = 0 
dt dx dx      ro (6) 

where v is the molar average velocity of gas in the crack, c is its 
molar concentration, x is the position along the crack. j0 is the 
molar oxygen flux, and <p0 is the molar rate of oxygen absorp- 
tion per unit volume of space in the crack. The gas is considered 
to be a two-component mixture including oxygen and an unre- 
active gas, say, nitrogen. The oxygen flux;0, given by24 

Jo: 
dx 

(7) 

occurs_relative to the mixture moving at velocity v. The diffu- 
sivity D has Knudsen and molecular contributions, with the 
slower process being dominant. The Knudsen diffusion coeffi- 
cient for a narrow channel is 

(8) 

where M0 is the molar mass of oxygen. For small crack open- 
ings A, Dt is assumed to control D. 

*In a previous treatment of this problem. Lamouroux er a\?* make the erroneous 
initial assumption that steady state exists and they use a steady-state differential 
equation. 

The velocity of the gas mixture in the crack occurs by con- 
vection to replenish oxygen as it is lost in the oxidation process. 
It is assumed that gas ingress occurs without resistance, so that 
the mixture everywhere in the crack is at ambient temperature 
and pressure. The molar concentration c is therefore uniform 
and constant. Consideration of Eq. (6), together with an equiva- 
lent for the inert gas, gives 

(9) 

From Eq. (1), the molar rate of oxygen consumed by the reac- 
tion with the fibers and the coatings is 

<p = \fD0cX0/Rd (10) 

where/is the volume fraction of fibers in the composite and \ 
is the length of the fibers oxidized at each matrix crack, divided 
by the crack opening. The parameter X is assumed to be con- 
stant and uniform in the crack. 

Combination of Eqs. (6), (7), and (10) then yields 

dX, 
dt 

o     d(X0v) 
dx 

-D 
-82X0 t \fDoX0 

dx2 Rd 
= 0 (11) 

This equation has been solved simultaneously with Eq. (9), 
subject to integration of Eq. (I).27 The initial conditions are 
everywhere X0 = 0.2 and d — 0. The boundary conditions are 
X0 = 0.2 at x = 0, as well as dX0/dx = 0 and v = 0 at the crack 
center. Upon using literature data for SiC, the key results2' 
(Fig. 7) demonstrate how the oxygen concentration gradient 
develops, upon initial matrix cracking, as the oxygen penetrates 
the composite through the cracks. There are corresponding 
trends in the oxide thickness (Fig. 8). At longer times, the oxy- 
gen concentration becomes relatively uniform. This happens 
quickly as D/D0 becomes relatively large. 

In order to apply these results to oxidation embrittlement. an 
analytical approximation is required for the oxide thickness. 
Inspection of Fig. 8 indicates that 

yß ~    yfd,  " Xlyfi. (12) 

where dy is the oxide thickness at the surface and L is a penetra- 
tion depth, having the functional form27 

L = &DID0f (13) 

where £ is a nondimensional fitting coefficient. Note that L 
decreases as the temperature increases, because more oxygen is 
consumed to create an oxide reaction product. 
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Fig. 6.    Schematic of oxygen concentration gradient in the crack and 
the corresponding gradient in oxide thickness. 

Fig. 7.    Variations in oxygen concentration in the crack at 900°C 
calculated for diffusivities relevant to Nicalon fibers in CMCs.r 
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for diffusivities relevant to Nicalon fibers.27 

VI.   Crack Growth 

(1)   Reaction Controlled 
When the crack is propagating slowly, such that the oxygen 

concentration in the crack is uniform, all of the fibers within the 
crack are expected to fail when their strength, S. decreases to 
the concentrated stress, o-c. This occurs at a time Ar, which can 
be obtained from Eqs. (4) and (5) as 

T-®h<r (14) 

When the fibers fail, the unbridged crack extends by b, the 
original bridging zone size, causing another bridged segment to 
form. The magnitude of b for finite length cracks does not have 
a simple analytical form. For present purposes, the solution for 
a semi-infinite crack (Fig. 9) is used as an approximation. It is 
given by12 

(15) 

where Tm is the matrix fracture toughness. For most cases of 
interest, the initial unbridged crack is relatively large, a» b 
(as in 0/90 composites, with initial ply cracks), whereupon 
Eq. (15) simplifies to 

b     (3 
R 

s/ir/4)2'Vl-/\u|o-   ja + b 

X 
JTT(a + b)       ,| 

L°"V^rm(i -/)   
l\ 

b_ 
R 

(3y£/4)2/yi -/ 

/ 

£rm(i -/) 
-1 (16) 

The effective crack velocity at constant applied stress a and 
fixed friction stress T is 

ä = b/At 

Hence, from Eqs. (14) and (16), 

dCt r— 
-gr = Aaui[B V« - 1][1 + Cor'3]2 

where a = a/R, ? = Af/f0, 

A = 0.24(<T//S„)4(1 -/)"-V/T)='-7/"3 

(17) 

(18) 

B = cr 
TTR 

ETJ\ -/) 

f 

*._b—» 
uiii inn lui ii 

Kt 

I 
Fig. 9. Ratio of crack tip stress intensity, AT,, to applied value, K, as a 
function of bridging zone size, b, normalized by a length dimension,7 

5 = OAEKI?r)-'\ where ß = [4f2E,E2-r/R{l -f)2Ei]"2. 

C = 
3ir/27 

Ld -f)Y 
Rearranging identifies an expression for the time tc taken for 
the unbridged crack to grow from its initial size a0 to a larger 
size, a, at constant stress a and fixed T as 

a 

/ 
[<x-ln(Byfc - 1)-'(1 + Ca2/3)-2] da = A'tc (19) 

Plotting yields the characteristics summarized in Fig. 10. 
It is apparent that the behavior can be separated into two 

regions: 
(i) A threshold below which the crack cannot propagate is 

given by B^fa < 1. Inserting the definitions of B and a identi- 
fies a threshold stress S,„ and a threshold stress intensity factor 
Ka below which there is no crack growth. 

Klh = V£Fm(l -/) (20) 

where Klh = S„,yfnä. The threshold arises because the matrix 
crack cannot extend when K < K,h, even in the absence of 
bridging fibers. A second requirement is that 

o-<3ir/2Ta/(l-/)2Ä (21) 

(ii)   Above the threshold, the crack extends according to a 
power-law growth rate given by 

da/d? «= ABC-a">6 (22a) 

atn = 
0.7 

|/w(l -/)'' JtjET^R™. 
K': (22b) 

where K is the stress intensity factor. The power-law depen- 
dence is again reminiscent of stress corrosion crackina. 
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► 0. Above the 

The propagation time, A/c, for a crack to extend from a0 to 
a is 

A? = 
(6/7) 
ABC- (*/fl0)

7*n - K/*n (23a) 

or in actual time 

Arc = 0.1/5"(1 -f)"* 
Sjy.fET„ 

(cr'V)"3/?"2 '-'7 
(23ft) 

where the initial unbridged crack size a„ is equal to the ply 
thickness h for 0/90 composites. 

(2)   Diffusion Controlled 
When the magnitude of the oxygen penetration distance L 

(Eq. (13)) is small, diffusion-controlled crack growth can occur. 
The situation is depicted in Fig. 6. The bridged segment con- 
tains fibers subject to an oxide thickness distribution given by 
Eq. (12). A steady state may then be envisaged in which the 
weakest fibers at the perimeter of the unbridged zone fail, 
causing the entire bridged configuration to extend by the fiber 
spacing, s. The process repeats at time intervals. Ar,. governed 
by the oxide thickness, d,. that exists at the next row of fibers. 
The corresponding crack velocity would be 

■■ a/At, (24) 

According to this scheme, the oxide thickness, d,. is obtained 
fromEq. (12) as 

y/d, = v^ - s/yfi - (25) 

Here, dc is the critical oxide thickness at which the fibers fail, 
obtained from Eqs. (3) to (5) as 

dc = <*0(S0//a)V(l + Tf") (26) 

The time Ar, is related to the difference between d, and dc. It is 
given approximately by Eq. (3) as 

Ar, - [(</, - d,)/H}~ (27) 

An assumption is now needed about the location within the 
crack where the oxygen concentration is atmospheric. Since the 
crack openings are much larger in the unbridged than the 
bridged regions of the crack." it is assumed that this location 
occurs at the end of the unbridged crack. Then, combining 
Eqs. (25) to (27) gives 

At, •= MSBf/oYMLft\ + V)"5 (28) 

Note that upon comparison with reaction-controlled behavior. 
Eq.(l4).A/, E4AI(S/L)

;
. 

Since s - 2/?/N//. the crack velocity becomes. 

djv = (?78)/v:/?(Ö/D0):(o7S„)4(l + TT'Y (29a) 

äj„ = (l/8)(L=//?).f/:(o-/S„)J(l + -rr")- (29/>) 

This is the stage II. steady-state velocity o. of the matrix crack. 
It is independent of crack length, but still dependent on stress. 
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It can be compared with Eq. (22) for stage I. reaction-controlled 
propagation. By equating a to a„, the transition from stage I to 
stage II could be specified, as well as the correspondingcrack 
length.«,. 

The overall behavior is sketched in Fig. 11(a). The threshold 
stress intensity factor, #,„, is indicated. The slope. a(K), in the 
reaction-controlled stage I is 13/3. Diffusion-controlled stage II 
is subject to constant crack velocity, at fixed applied stress, a: 
but this velocity does depend on cr. 

The propagation time in stage II, Ar„ is 

Ar, = (a, - a,)/a. (30) 

where ac is the crack size at which the remaining composite is 
unable to support the load. 

A net section stress criterion can be used for ac, because of 
the notch insensitivity of most CMCs, subject to fiber pullout.28 

Composite failure then happens when the net-section stress 
reaches the ultimate tensile strength, S. This condition obtains 
when the crack length ac becomes 

ajw = 1 - yJä/S (31) 

where w is the width of the section that supports the load in the 
absence of embrittlement. 

VII.   Rupture Time 

The rupture life predicted by the model has the features 
depicted in Fig. 11(b). When K < Kltl, the life is essentially 
infinite. When K > Klb, the life tr can be estimated from ä(K) 
(Eqs. (23) and (30)), in the normal manner, by separating the 
variables and integrating the crack length from its initial value, 

(a) 
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Fig. 11.   Schematic of trends in the rupture life with applied stress, 
showing the reaction-controlled and diffusion-controlled regimes: 
(a) crack growth rate a. as a function of stress intensity factor. K; 
(b) rupture life t, as a function of applied stress, cr. The threshold, as 
well as stages 1 and II, are identified. 

a„, to the critical value, a,..'"" A similar analysis may be used 
to obtain the cycles to failure, N„ when the loading is cyclic.2" 

If the unexposed fibers retain their original strength, the 
propagation time in stage I, A/,., scales according to 

Arc = 0.1r„ 
SJVCTJ?4 

(0-i-V)"W ■-G f'W -f)m" 

(32) 

where r„ must be calibrated by experiment. The term S„ reflects 
the influence of the initial fiber strength, Tm, the effect of matrix 
toughness, and T the influence of the friction stress. For a 
specific composite (fixed S0, Tm, T) a further simplification is 

Ar, = r„(a*/o-)l3/3[l-(/V<7,)7/''] (33) 

where or* is a reference stress, which may change with time if T 
is affected by oxidation. 

At low stresses, the fracture time is controlled by Ar,, 
through the rate of growth of the oxide reaction product on the 
fibers. It is strongly temperature and stress dependent. The 
rupture time decreases as either the temperature or the stress 
increases. At high stresses, fracture may become controlled by 
oxygen diffusion along the matrix crack. In this regime, as 
temperature increases, more oxygen is consumed near the crack 
mouth to form an oxide of greater thickness, such that less 
oxygen penetrates into the material through the cracks (smaller 
L). The growth rate of the cracks, as, may thus diminish as the 
temperature increases, dependent on the relative magnitudes of 
r0 and L. The resultant behavior is characteristic of a "pest" 
phenomenon, with a maximum embrittlement occurring at 
intermediate temperature. This effect has been noted previously 
and elaborated in other articles.24-25 It is again similar to stress 
corrosion.'8" However, this is not the only (or perhaps even the 
predominant) source of the "pest" effect. Two other factors 
may be more important, both associated with the temperature 
dependence of the viscosity of the oxide reaction product: (i) At 
high temperatures, the oxide can flow into the matrix cracks. 
This process may block access of oxygen to the composite 
interface, (ii) Oxide flow also diminishes the severity of the 
fiber strength degradation by alleviating stress concentrations 
in the fibers caused by the oxide. All of these possibilities 
require further experimental and theoretical assessment before 
the "pest" effect can be fully explained. 

When narrow pathways exist between neighboring matrix 
cracks, through gaps at the interfaces, the internal fibers can 
degrade, changing S0 in Eq. (29). The reduced strengths could 
be obtained from Eqs. (1) and (4) if the gas-phase concentration 
and composition inside the composite were known. In some 
cases, these factors are controlled by carbon, present as either a 
fiber coating or a residue. Then CO and CO, are produced 
internally at a rate that limits the 0,/CO, ratio.'enabling slow, 
controlled oxidation of the internal fibers. In other cases, there 
are oxygen sinks in the material, such as B. Analysis of these 
effects is beyond the scope of the present study. 

VIII.   Concluding Remarks 

A kinetic model has been presented that describes the ingress 
of oxygen through matrix cracks, as well as its reaction with the 
fibers and fiber coatings to cause stress oxidation cracking in 
non-oxide CMCs. The results of the model are given in the 
form of nondimensional groups of kinetic parameters that need 
to be calibrated by a few critical experiments. Once calibrated, 
the results could be used to predict the behavior over a wide 
range of conditions. 

The present model does not have features that explicitly 
suppress stress oxidation at high temperatures. This phenom- 
enon is attributed to temperature conditions that sufficiently 
diminish the viscosity of the oxide reaction products that they 
can flow and impede oxygen access, as well as ameliorate the 
weakening of the oxidized fibers. Additional modeling would 
be needed to introduce these effects in a systematic manner. 
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Abstract 

In SiC/SiC composites, the matrix has greater creep resistance than the fibers. The consequent fiber deformation has been 
shown to transfer sufficient stress onto the matrix that, above a threshold, matrix cracks propagate across the 0° plies. This process 
increases the compliance of the composite and reloads the fibers, resulting in creep rates dominated by the fibers. The extent of 
the compliance change is limited by the high temperature interface friction stress, T, through its effect on the crack density. After 
creep, T is diminished substantially from its room-temperature magnitude, resulting in low crack densities and extensive fiber 
pull-out. A matrix-cracking solution for composites with creeping fibers has been used to correlate the experimentally determined 
rates of compliance change and the creep strain. 

Keywords: Creep; Deformation; SiC/SiC composites; Matrix cracking 

1. Introduction 

The high-temperature performance of ceramic-matrix 
composites (CMCs) is usually limited by one of two 
phenomena: embrittlement or creep [1-6]. The 
longevity of non-oxide CMCs is presently governed by 
their susceptibility to a "pest" problem that operates in 
the temperature range 500 to 900 °C. This problem is 
being addressed by attending to the chemistry of the 
fibers and interfaces. Should this limitation be resolved, 
creep would become the temperature-limiting phe- 
nomenon, as it is now in oxide CMCs. High strength 
CMCs are typically made with fine-grained fibers. Such 
fibers are susceptible to creep and rupture, causing 
high-temperature composite performance to be fiber- 
creep-limited [7,8]. This situation is addressed in the 
present article. 

There are two basic situations to be considered when 
CMCs are creep-limited, dependent on the relative 
creep strengths of the fibers and the matrix. When the 
fibers have the greater creep resistance, matrix deforma- 
tion transfers stress to the fibers in accordance with the 
McLean model [9]. Consequently, for most situations of 
practical interest, the composite response to loading 

* Corresponding author. 

along one fiber axis is controlled solely by the creep, 
properties of the fibers. Such behavior has been demon- 
strated for SiC/CAS composites [10]. When the fibers 
have a lower creep resistance than the matrix, the 
composite response is less obvious. Within this category 
there appear to be two behaviors, dependent on the 
relative stiffness of the matrix: (a) if the matrix has a 
high compliance, as in SiC/C composites, elastic strain- 
ing of the matrix occurs readily, arid composite creep is 
still controlled by the fibers [11]; (b) high-stiffness ma- 
trices, exemplified by SiC/SiC, behave differently [5,6]. 
Composites of the latter type are examined in this 
study. '      - 

2. Theoretical background 

In CMCs comprising fibers that creep in an elastic 
matrix, fiber creep transfers stress to the matrix [4-6]. 
This causes matrix cracking. The cracking in turn di- 
minishes the matrix stiffness. This enables the fibers to 
reload, inducing further creep. The interaction between 
fiber creep and matrix cracking is the principal theme 
of this paper. The available theoretical results that 
relate to these phenomena are summarized as back- 
ground to the experimental study and for the interpre- 
tation of the results. 

0921-5093/96/S09.50 © 1996 — 
SSDI0921 -5093(95)09867-4 
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2.1. Creep-induced matrix cracking 

Previous analysis has demonstrated that matrix 
cracks propagate as creep relaxes the fiber-bridging 
tractions [4,5]. The benchmarking of this behavior for 
0/90 composites is provided by two bounds: (a) a 
threshold stress crlh and (b) a steady-state crack velocity 
vs. For 0/90 CMCs, matrix cracks first form in the 90° 
plies and partially penetrate the 0° plies (Fig. 1). 
Threshold behavior obtains when the stress a is small 
enough to assure that these cracks do not extend, even 
though the fibers creep. This condition is characterized 
by a threshold stress [4] 

Ch = 
2£mrm(i -/) 

nh (1) 

where Em is the Young's modulus of the matrix, Tm is 
its fracture energy, / is the fiber volume fraction in the 
plies and h is the ply thickness. When a < <rth, creep is 
transient and governed by the McLean model [9]. 

When a > <7,h, the crack extends into the 0° plies as 
fiber creep occurs. The trends in crack velocity are 
depicted in Fig. 2. An upper bound is evident, associ- 
ated with a steady-state velocity vs. For fibers subject to 
linear creep with viscosity n, this velocity is given by [4] 

(3x\(2/E,      \[(l-f)Ejl      , 

> 
o a 
ü 
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Fig. 2. Crack velocity predictions for 0/90 CMCs with creeping fibers: 
v* and a* are reference velocity and crack length, respectively, 
defined in Ref. [4], 

where E, is the Young's modulus of the fibers, E is the 
composite modulus, a^ is the steady-state matrix 
cracking stress in the absence of creep, and g is a 
function given approximately by [4] 

S(<r/<rmc)*[l-(<7/<7mc)*]- (3) 

where b is an exponent (b = 3). 
The velocity can be related to a reference time, At, 

required to extend the cracks across the 0° plies as 

/s    \l7i)(\-f)TmEm\2fE{IE+\) 

The properties of SiC/SiC composites needed to esti- 
mate At are summarized in Table 1 [12-14]. 

When Nicalon fibers are used, one complication is 
the time dependence of the viscosity, caused by grain 
coarsening [7,10]. This would not be a problem for 
microstructurally stable fibers, such as a-SiC and a- 
A1203. However, for Nicalon fibers [10] 

1 = (ffo/feoKt/to)" (5) 

Table 1 
Properties of SiC/SiC composites 

Fig. 1. Schematic of cracking events in 0/90 composites. 

Property Magnitude Comment 

£m 300 GPa Porous matrix [12,13] 
E, 200 GPa Measured [7] 
f 0.4 Within plies 
E 260 GPa Measured [12] 
<*mc 140 MPa Measured [12,13] 
rm lOJm-2 Columnar grains [2] 
h 200 urn 
'o 10"6s 1200"CnO] 
T 50 MPa Room temperature [13] 
»th 60 MPa Eq. (1) 
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where er0 is a reference stress (1 MPa), e0 is a reference 
strain rate, t is time, and t0 is a temperature-dependent 
time constant (Table 1), with a «0.9. 

2.2. Debonding and friction 

There are several indicators of debonding and fric- 
tion that may be used to probe the effects of tempera- 
ture and creep on the interface response when matrix 
cracks are present: 

(1) The most direct indication is provided by mea- 
surement and analysis of the hysteresis strains, as elab- 
orated elsewhere [13,15]. A parameter related to these 
strains having particular relevance is the friction index 
L, which is dependent on the friction stress z and the 
crack spacing d in accordance with [13,15] 

*2(1 - aJfRca2 

simple form [19] 

4E«fLd (6) 

where b2 and a, are coefficients of order unity [16], R is 
the fiber radius, and co is a load partitioning factor 
between 1 and 2. The magnitude of L can be obtained 
from the inverse tangent modulus (ITM) or the width 
of the hysteresis loop. The hysteresis strains may also 
be used to assess the magnitude of the interface tough- 
ness [15]. 

(2) When the matrix cracks in the 0° plies reach 
saturation, the crack spacing ds relates to x, such that 
[17] 

T = (7) 

where a, is the debond stress, which is related to the 
interface toughness [16]. 

(3) The fiber pull-out length p provides yet another 
measure of the interface friction stress. The relationship 
when there is multiple matrix cracking is given by [18] 

T = RSJ(m)/p (8) 

where Sc is the characteristic strength of the fibers at 
the test temperature, with m being the Weibull modulus 
and ^(w)«0.25 for typical m ( = 3-5) [2,18]. The 
strength Sc is inferred from the ultimate tensile strength 
(UTS), measured after creep testing, Su, using the rela- 
tion [18] 

Sc = (9) mm) 
where F(m)« 0.7 for Nicalon fibers in CMCs. 

2.3. Compliance 

The compliance is related primarily to the matrix 
crack densities in both the 0° and 90° plies, and their 
morphologies. When all of the cracks in the 90° plies 
extend across the 0° plies, the relationship has the 

-1 = C, H(t (10) 

where E is the initial modulus, E* is the diminished 
modulus after matrix cracking, d is the crack spacing; 
C( and Z), are coefficients of order unity that depend 
primarily on elastic properties and fiber volume frac- 
tions. Before the cracks penetrate the 0° plies, the same 
result applies, but with the second term in the square 
parenthesis being zero [19]. Solutions for other crack 
configurations are not available. 

3. Experiments 

3.1. Procedures 

The experimental studies are performed on a 0/90 
SiC/SiC composite with a plain weave, having the 
microstructure and room temperature properties elabo- 
rated elsewhere [12-14]. The tests are performed in 
tension in an inert (Ar) atmosphere within a servohy- 
draulic loading frame. The loads are applied to the 
specimen by water-cooled stainless steel friction grips. 
The furnace is resistance-heated with W elements. The 
displacements are measured in the hot zone by a me- 
chanical extensometer, held in contact with the speci- 
men by means of a small spring. All experiments are 
performed at 1200 CC. The tests are conducted subject 
to load control, and the displacements recorded. Peri- 
odic (relatively rapid) unloading and reloading cycles 
are used to assess changes in constituent properties as 
the experiments proceed [13,15]. 

Some tests are interrupted prior to failure. The loads 
are removed and the specimens cooled to allow investi- 
gation of the creep damage by performing scanning 
electron microscopy (SEM) observations of the sur- 
faces. Others are loaded to failure after completion of 
the creep test in order to measure the retained strength. 
These samples are also examined by SEM. 

3.2. Results 

The creep rates measured at 1200 °C, at three stress 
levels (50, 75 and 110 MPa) are plotted in Fig. 3. The 
deformation is transient, as in other CMCs reinforced 
with Nicalon fibers [6,10-11]. The evolution of the 
hysteresis loops indicates the changes that occur in the 
material as creep proceeds. There are no significant 
changes upon creep testing at 50 MPa, but at the higher 
stresses both the compliance and loop width increase as 
creep proceeds (Fig. 4). The inverse tangent moduli 
(ITMs) may be obtained from the reload strains [13,15] 
(Fig. 5). These provide information about the con- 
stituent properties and their variation during creep, as 
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Fig. 3. Creep rate as a function of strain upon testing at 1200 °C at 
the indicated stresses. 

elaborated below. Note that the ITMs have a linear 
stress dependence. This feature is characteristic of a 
material with a low interface toughness [15]. It con- 
trasts with the behavior found at room temperature on 
the same composite [12,15]. 

SEM observations conducted after interrupting the 
tests performed at 110 MPa reveal matrix cracks (Figs. 
6(a) and 6(b)). These cracks extend across the 0° plies 
after about 10 h. At longer times, they extend across 
several 0/90 plies. The crack opening displacements 
{8 x 7 /im) are substantially larger than those evident 
after room-temperature testing [12]. The crack spacings 
(<5« 600 //m) are also relatively large, indicative of a 
much lower friction stress than that at room tempera- 
ture [13] (Table 1). It appears as if the cracks originate 
at large pores in the 90° plies (Fig. 6(b)) and then 
extend continuously across several neighboring 0/90 
plies (Fig. 6(a)). 
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Reloading Stress, a, (MPa) 

Inverse tangent moduli evaluated from the reload hysteresis 

Specimens tested to failure after completion of the 
creep test at 110 MPa had a retained strength, Su « 300 
MPa, larger than the room-temperature UTS [12,13]. 
The corresponding characteristic strength [18] (Eq. (9)) 
is Sc« 2.1 GPa. These specimens also exhibited appre- 
ciable fiber pull-out (Fig. 6(c)), with an average pull-out 
length p of 400 fim. At room temperature [17] the 
corresponding magnitude is/? = 30 fim, again indicative 
of a reduced friction stress after creep testing. 

0.05 0.1 0.15 0.2 

Strain, E(%) 

025 0.3 

Fig. 4. Hysteresis strains measured upon periodic unloading and 
reloading after testing at 1200 °C for different times at 110 MPa. 

Fig. 6. SEM observations of matrix cracks formed after testing in 
creep at 1200 °C to a strain of about 0.5% at a stress of 110 MPa: (a) 
overview; (b) close-up of one matrix crack; (c) fiber pull-out upon 
loading to failure after creep testing. 
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Fig. 7. Variations in (a) the elastic modulus and (b) the friction index 
with strain evaluated from the ITMs (Fig. 5). 

4. Analysis 

4.1. Compliance changes 

Hysteresis loop analysis performed using procedures 
described elsewhere [13,15] gives the changes in the 
compliance and friction index plotted in Fig. 7. At the 
lowest applied stress (a = 50 MPa) there is transient 
creep, but the modulus remains invariant. These find- 
ings suggest that this applied stress is below the crack 
growth threshold. Indeed, by using the constituent 
properties indicated in Table 1, the predicted threshold, 
<7th a 60 MPa, is found to be consistent with the obser- 
vations. At higher stresses, 75 MPa and above, the 
cracks propagate and the modulus decreases. These 
changes are assessed using Eq. (10). For SiC/SiC (Table 
1) and at the low crack densities found in the present 
experiments (Fig. 6(a)), the coefficients are [19] Z>, a 1.8 
and C, a 1.2. Hence, the modulus ratio should change 
by about 15% as the cracks extend across the 0° plies. 
The data (Fig. 7(a)) indicate larger changes, because the 
cracks have a configuration that differs from that used 
to obtain Eq. (10). Instead of being continuous, the 
cracks originate in the 90° plies and extend across 
several neighboring plies. The next step would be to 
establish the geometric evolution of matrix cracks in 
order to provide a predictive capability. 

4.2. Friction stress 

The friction stress is estimated in three different ways. 
The matrix crack spacing in the 0° plies upon satura- 
tion, ds, provides a preliminary estimate. If the debond 
stress rjj is considered to be small, because the interface 
toughness is small, then Eq. (7) gives x a 2 MPa. This 
value also predicts a friction index L (Eq. (6)) similar to 
the measured magnitude (Fig. 7(b)). Moreover, insert- 
ing the measured fiber pull-out length, p = 400 //m, into 
Eq. (8) gives x = 6 MPa. Values in the range 2-6 MPa 
are much smaller than at room temperature [13], where 
T a 50 MPa. The lower magnitude of x after creep at 
high temperature might be rationalized using rough 
fiber sliding models [20], but an explicit attempt is not 
made here. One important effect is the diminished 
residual stress at 1200 °C. Another might be the greater 
fiber compliance at this temperature. 

4.3. Crack growth 

The reference time for crack growth (Eq. (4)) may be 
used to rationalize the rates at which the compliance 
changes and the composite creeps. Two of the parame- 
ters in this formula need to be interpreted before pro- 
ceeding: 

(1) The matrix cracking stress <7mc is expected to 
differ from the room-temperature magnitude. 

(2) The fiber viscosity changes with time, and the 
crack velocity diminishes as it propagates. Because of 
these complicating factors, it is only possible to assess 
overall consistency between the observations and the 
model. Explicit predictions cannot be made. 

There are two counteracting effects on o-mc as the 
temperature changes: one associated with the dimin- 
ished T and the other with the reduced residual stress 
[2]. These effects are assumed to annul. 

Based on the time for cracks to grow across the 0° 
plies (about 10 h at 110 MPa), the average fiber viscos- 
ity is obtained from Eq. (5) as n= 1015 Pa s_1. With 
this viscosity, the reference time is obtained from Eq. 
(4), using the information from Table 1, as Af a 104 s. 
This is indeed comparable to the time found for the 
cracks to grow across the 0° plies. It would thus appear 
feasible to use Eq. (4), with a compliance model, to 
predict the creep characteristics, whenever the fibers 
have fixed viscosity. 

5. Concluding remarks 

The creep rate of SiC/SiC above a threshold stress is 
dominated by the creep viscosity of the fibers, because 
the stress transferred onto the matrix causes cracks. 
There is a consequent decrease in stiffness, which de- 
grades the material, reloads the fibers and allows creep 
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to continue. The stiffness decrease depends on the crack 
morphology and density. This density, in turn, is 
affected by the interface friction stress: smaller values 
give lower densities and a diminished stiffness degrada- 
tion. In this SiC/SiC composite, the friction stress 
is found to be much lower after creep at high tempera- 
ture than at room temperature. The temperature sensi- 
tivity might be attributed to a reduction in residual 
stress. 

The rate at which the modulus decreases and creep 
occurs depends on the rate of matrix crack growth. 
This rate has been as assessed from a steady-state 
bridging model with creeping fibers. However, a supe- 
rior appreciation for the applicability of the model will 
be gained when CMCs with microstructurally stable 
fibers become available. 

One implication of this work is that the creep perfor- 
mance of CMCs must be addressed by improving the 
creep resistance of the fibers. Increasing the creep resis- 
tance of the matrix does not have an appreciable effect 
and, moreover, is accompanied by creep-induced reduc- 
tions in stiffness. 
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Composite Laminates in Plane Stress: Constitutive Modeling and 
Stress Redistribution due to Matrix Cracking 

Guy M. Genin and John W. Hutchinson' 
Harvard University, Cambridge, Massachusetts   02138 

Plane-stress constitutive relations for laminate composites 
undergoing matrix cracking are developed that can be fit 
to data from uniaxial tests. The constitutive equations are 
specialized to brittle-matrix composites in the form of cross- 
plies and quasi-isotropic laminates. The effect of nonlinear 
stress-strain behavior on stress redistribution around holes 
and notches in laminate plates is illustrated. 

I.   Introduction 

FIBER-REINFORCED brittle-matrix composites are of techno- 
logical interest as potential lightweight materials for high- 

temperature environments. Design with brittle-matrix composites 
is typically based on linear elastic stress analyses, and compo- 
nents made of such composites are usually constructed so as 
to avoid all cracking at design loads. This approach is unduly 
conservative for certain classes of fiber-reinforced ceramic- 
matrix composites that possess appreciable "ductility" associ- 
ated with matrix cracks that leave the fibers intact. Allowance 
for some matrix cracking at points of high stress concentration 
can considerably increase the load-carrying capabilities of some 
of these materials. In these laminates, the nonlinear stress- 
strain behavior associated with matrix cracking can redistribute 
and reduce stresses in regions of high stress concentration, 
similar to the way that plastic deformation accommodates stress 
concentration in metals. 

An example of a composite that displays some ductility is 
coated silicon carbide (SiC) fibers embedded in a glass (calcium 
aluminosilicate, CAS) matrix. When SiC/CAS laminae are 
stacked in a (0790°) crossply configuration and loaded in uniax- 
ial tension, the stress-strain behavior of the laminate is as 
shown in Fig. 1(A), as reported by Cady1 and Beyerle et al.2 

The material responds linearly to the point at which the matrix 
material begins to crack, then loses stiffness as an increasing 
number of matrix cracks form.2,3 The cracks that are growing in 
the matrix material deflect into the low-toughness fiber/matrix 
interfaces, given an appropriate fiber coating, and eventually 
arrest,4-5 leaving the fibers intact. When the matrix material 
becomes saturated with cracks, all the load is taken by the 
fibers, which deform in a linear elastic fashion until failure. 
When the fibers do start to fail, they do not necessarily break at 
the matrix-crack plane; consequently, they continue to provide 
some load-carrying capacity because of frictional pullout. The 
data shown in Fig. 1(A) has been taken under nominally load- 
controlled conditions. If the data had been taken in a controlled- 
displacement tensile test, a portion of the stress-strain curve 
with decreasing stress after the peak would be observed. 

Figure 1(A) also shows the Cady data1 for the strain trans- 
verse to the loading direction in a uniaxial tensile test that has 
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been conducted parallel to a set of fibers in the SiC/CAS cross- 
ply. The material experiences the usual Poisson contraction in 
the linear range; however, as matrix cracks deflect into the fiber/ 
matrix interfaces and the fibers become increasingly debonded, 
the transverse strain is largely uncoupled from the uniaxial 
stress and the strain increments reverse sign. By the point at 
which the matrix material becomes saturated with cracks, some 
composites actually experience an expansion in the transverse 
direction. 

Figure 1(B) shows the uniaxial and transverse strains 
resulting from a controlled-force tensile test that has been con- 
ducted at an angle of 45° to the fiber directions in a SiC/CAS 
crossply. The curves illustrate a different behavior from that 
exhibited in the previous loading, with extensive straining at 
nominally constant stress once matrix cracking is underway. 
The matrix cracks still form perpendicular to the direction of 
the maximum principal stress; however, now the fibers are not 
oriented to carry the applied stress nearly as effectively as when 
the stress acts parallel to one set of fibers. If the matrix were not 
present, the crossed fibers would simply deform by a "scissor- 
ing" mechanism. The uncracked matrix suppresses this mecha- 
nism but matrix cracking permits its partial operation. The 
density of matrix cracks at saturation is generally much higher 
for the 45° loading than for the 0° loading. This effect may be 
increased by a porous matrix or strong elastic anisotropy in the 
fibers. However, the matrix cracking stress and even the elastic 
modulus for loading at an angle of 45° to the fiber directions 
may be higher or lower than the corresponding quantities for 
loading parallel to the fibers, depending on the properties of the 
constituents of a laminate. Transverse to the loading direction, 
the response of the SiC/CAS laminate differs significantly from 
the transverse response that is observed in-Fig. 1(A). After the 
45° matrix cracking stress is attained, the composite experi- 
ences continued negative transverse straining with strains on 
the order of the strain in the direction of loading. This behavior 
is readily understood in terms of the scissoring mechanism. 

The stress-strain curve for the SiC/CAS crossply subject to a 
shear stress applied parallel to the fibers is shown in Fig. 1(C). 
It is quite similar to the curve for uniaxial tension at an angle of 
45° to the fibers, with the composite exhibiting comparable 
ductility. 

Brittle-matrix laminates that are suitable for engineering 
have a tendency to be one of two types. Either they behave as 
SiC/CAS, with a strain to failure both in tension parallel to the 
fibers and in shear that exceeds the linear elastic strain for the 
corresponding failure load by a moderate amount, or they 
exhibit brittle behavior in tension with a much larger strain to 
failure in shear, as in carbon-carbon (C/C) composites. An 
example of the stress-strain behavior of the latter, as reported 
by Turner et al.,6 Heredia,7 and Evans,8 is shown in Fig. 2. Both 
types of materials are attractive in that they have been observed 
to redistribute stresses around stress concentrations, sometimes 
to the point that elastic stress concentrations are completely 
eliminated before the material fails.9-13 Such behavior is termed 
notch insensitivity. In this work, it will.be shown that changes 
in stiffness due to matrix cracking contribute to the notch insen- 
sitivity observed in components made of SiC/CAS laminates by 
forcing the redistribution of stresses away from regions of high 
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Fig. 1.   Stress-strain behavior of a SiC/CAS crossply in (A) uniaxial tension parallel to the fibers, (B) uniaxial tension at an angle of 45° to the 
fibers, and (C) pure shear in the fiber axes. Data is from Cady1 and Beyerle et al? 
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stress concentration. However, in components made of the C/C 
composite, matrix cracking can actually serve to intensify stress 
concentrations; the observed notch insensitivity in C/C compo- 
nents is due to phenomena that occur after the carbon fibers 
begin to fracture. 

Stress analysis that accounts for notch insensitivity allows 
for less-conservative design. The goal of the engineer, and the 
goal of the present work, is to predict the notch sensitivity 
of a brittle-matrix laminate in a particular configuration and, 
thereby, accurately assess the ultimate load and failure mecha- 
nism for a component made of these brittle-matrix laminate 
materials. 

Fundamental to such an analysis is a constitutive law that 
accounts for the inelastic material response of these composites. 
Although a substantial amount of literature exists for the predic- 
tion of the mechanical behavior of laminates of different mate- 
rial systems and stackings based on micromechanical analysis 
(e.g., Xia and coworkers14'5 and Dvorak and coworkers16"'8), 
the micromechanical approach to design is invariably too com- 
plicated to use for generating the constitutive response needed 
in component stress analysis. Although a few attempts have 
been made to actually design very simple laminate components 
from micromechanical analyses for metal-matrix and polymer- 
matrix composites (e.g., Kennedy and Wang19 and Dvorak 
et al.20), most efforts to develop computational methods of 
stress analysis to aid in the design of components of brittle- 
matrix laminates have led to two categories of constitutive 
relations: continuum damage laws and phenomenological 
stress-strain laws similar to those for elastic-plastic solids. 

Continuum damage mechanics attempt to curve fit experi- 
mental data with a set of damage parameters that are considered 
to be internal variables that evolve with the loading history. 
Various schemes for modeling the state of degradation of either 
a lamina or a laminate have included scalar variables,21"26 dam- 
age vectors,2' and even damage tensors (e.g., Talreja28 and Allen 
et al.29). The approach adopted in the present paper is the 
phenomenological approach. The focus is on behavior under 
proportional plane stressing, and the development of the consti- 
tutive law parallels that of the deformation theory of plasticity. 
This entails using data from stress-strain tests and, ignoring 
details of the internal mechanisms that produce this behavior, 
creating a scheme that reproduces the input tests and estimates 
the mechanical behavior for all other multiaxial loadings. 

Several phenomenological constitutive models exist in the 
literature, each of which treats either individual laminae or 
entire laminates as plane-stress continua and has been designed 

to model only proportional loading. Petit and Waddoups30 pro- 
posed an incrementally linear orthotropic model, in which the 
incremental shear and tensile moduli at each point within each 
lamina are updated to equal the tangent moduli of the stress- 
strain curves corresponding to the tensile and shear stresses at 
the beginning of a loading increment. Although their model 
completely neglects the behavior of the material transverse to 
the loading direction and, thus, is not applicable to multiaxial 
stress states, Petit and Waddoups30 did successfully predict ten- 
sile stress-strain curves for uniaxial loadings in different orien- 
tations on applying their scheme to laminate composites of 
different lay-ups, with the laminae constrained by the condition 
that points in neighboring layers must move together. 

Hahn and Tsai,31 focusing on materials such as the C/C 
composite, whose behavior is shown in Fig. 2, modeled the 
behavior of a lamina by combining linear elasticity for the 
normal components of stress and strain with a nonlinear elastic 
curve-fit of the shear behavior. Hahn32 later specialized this 
model to the case of a 0/90 laminate. Surrel and Vautrin33 

proposed a curve-fit of the nonlinear behavior for loading per- 
pendicular to the fibers in a lamina, in addition to a curve-fit 
of the nonlinear shear behavior, and then also successfully 
reproduced off-axis uniaxial test results in a unidirectional lam- 
inate. These simple constitutive models are limited in that they 
are incapable of modeling inelastic behavior that occurs for 
loading in the fiber axes, such as that observed for the SiC/ 
CAS composite in Fig. 1, and also fail to reproduce the often- 
reported observation that the maximum inelastic strain in a 
brittle-matrix laminate occurs in the direction of the largest 
principal stress. Nevertheless, several authors (e.g., Chang 
et al.34) have analyzed multidirectional laminate composites by 
applying a single lamina constitutive law, similar to that of 
Hahn and Tsai,31 to each of the individual laminae of a compos- 
ite in the manner of Petit and Waddoups30 and have obtained 
reasonable qualitative results. Other authors35'36 used the linear 
elastic properties of a 0/90 laminate combined with a nonlinear 
elastic curve-fit of shear behavior in a manner similar to that 
of Hahn.32 

The current work presents a plane-stress constitutive model 
for proportional loading of (0/90) laminate composites that is 
based on three uniaxial measurements. The formulation also 
applies to laminates of a (0/± 45/90) configuration. The model 
accurately predicts all additional sets of data that are available 
for the two material systems introduced above. The model is 
then used in component-stress analysis and accurately repli- 
cates experimental observations and measurements. 

400 
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I Tension 45° to fibers 
T.vs!s12(=0.5yI2) 

_t_ 

0.000 0.005 0.010 0.015 
Strain 

0.020 0.025 

Fig. 2.   Stress-strain curves for a C/C crossply (from Turner et al.,6 Heredia,7 and Evans8). 
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II.   Constitutive Model 

This section develops a plane-stress constitutive model for 
symmetrically stacked brittle-matrix laminates. In the first part, 
the model is developed for "specially orthotropic" laminates, 
i.e., laminates that possess cubic in-plane symmetry. The most- 
common examples of these are laminates stacked with a (0/90) 
configuration and laminates stacked with a (0/±45/90) config- 
uration in which the number of individual plies with a ±45° 
orientation differs from the number of plies with 0° and 90° 
orientations. Although the formulation is valid for both sys- 
tems, attention is focused on the (0/90) configuration. 

In the second part, the model is developed for laminates 
that possess in-plane isotropy. Two common configurations of 
laminae that produce "quasi-isotropic" laminates are the (0/±60) 
and (0/±45/90) configurations, the latter only when equal num- 
bers of laminae are oriented in each of the four directions. The 
constitutive equations for quasi-isotropic laminates are shown 
to be a special case of the constitutive equations for the cross- 
ply laminates. 

(1)   Crossply Laminates 
The most-reliable data on which to base a plane-stress consti- 

tutive model are uniaxial stress-strain tests. Let the results of a 
stress-strain test parallel to the fibers in a crossply composite 
be denoted by e, = /0(o-,) for strain parallel to the fibers, in 
terms of applied stress, and £„ =/0T(o-I) for strain transverse to 
the loading direction, in terms of applied stress, as depicted in 
Fig. 1 (A). The following is proposed for proportional multiaxial 
loading when the principal axes of stress and strain are aligned 
with the fibers: 

ei=/o(o-i)+/oT(o"ii) 

and 

en=/o(o-n)+/oT(CTi) 

(la) 

(lb) 

This assumes that no interaction exists between these two prin- 
cipal stress components, which is justified on the grounds that 
matrix cracking perpendicular to one stressing direction decou- 
ples the straining in the other direction. 

The axes at an angle of 45° to the fiber axes also are symme- 
try axes. For loading in which the principal axes of stress are 
aligned at an angle of 45° from the fibers in a crossply, the 
strains share the same principal axes and are considered here to 
be given by relations similar to those in Eqs. (1): 

EI=/45(0-,)+/45TK) (2a) 

and 

Ell = /«(°"ll) +/45T(°"I) (2b) 

In these equations,/45(o-,) represents strain in the loading direc- 
tion for a uniaxial tension test conducted at an angle of 45° to 
the fiber directions, and/45T(a,) represents strain transverse to 
the loading direction for this test, as shown in Fig. 1(B). 

An important connection follows from the requirement that, 
for equibiaxial loading with a, = a„ = a, the orientation of the 
principal axes is indeterminate and the strains from Eqs. (1) 
must match the strains from Eqs. (2). Consequenfly,/45T(a) may 
be written in terms of the other three functions as 

UAfr) =/O((T) +/0T(ff) -/45(a) (3) 

In principle, experimental stress-strain data for any three of the 
four functions appearing in Eqs. (1) and (2) could be chosen, 
with the fourth given by Eq. (3). In this work, data for the three 
functions on the right-hand side of Eq. (3) will be input into the 
model, whereas/45T(a) follows from Eq. (3). 

From this point, the formulation continues as a recipe for the 
stresses in terms of the strains. This is necessary because, for 
materials of the type being considered, stress component ranges 
vary significantly for various multiaxial states, whereas strain 
components are much less restricted. We define 20(£„£„) as the 
inverse of Eqs. (1), such that 

o"i = 20(£r,e„) 

and 

a,, = lotete,) 

(4a) 

(4b) 

The reduction in stresses due to matrix cracking at prescribed 
e, and £„, when the principal loading axes coincide with the 
fiber directions, is the difference between the stresses that 
would result if no cracking occurred and 20. The "stress defi- 
cits" for loading in the fiber axes are defined as 

Aa° £o 
(1 - v0

2) 
(e, + V0E„) - Sota.En) 

and 

ACT?' = (I^) (E„ + v0e,) - 20(£mEi) 

(5a) 

(5b) 

where £0 and v0 are, respectively, the elastic modulus and 
Poisson's ratio for uniaxial loading parallel to the fibers. 

Similarly, for the case when the principal axes of loading lie 
at an angle of 45° to the fiber directions, denote the inverse of 
Eq. (2) as a, = S45(e,,e„) and a„ = 24S(eII,eI) and let the stress 
deficits due to matrix cracking be given by 

Aa? 
(1 " v45

2) 
(e, + V45E„) - S45(e„en) 

and 

Aa?,5 = £« 
(1 " v45

2) 
(e,, + V45E,) - 245(£,„£,) 

(6a) 

(6b) 

Here, £45 is the elastic modulus for uniaxial loading in the axes 
at an angle of 45° to the fiber directions; v45, which is the 
Poisson's ratio in these axes, can be expressed in terms of £0, 
v0, and £45, using Eq. (3), as 

v45= 1 
£o 

(1 - v.) (7) 

Now consider principal strains (£,,£„) in principal axes ori- 
ented at an arbitrary angle 0 from the fiber directions. The 
principal axes of stress deficits due to matrix cracking are 
considered to coincide with the principal strain axes. The stress 
deficits in these axes are assumed to be given by interpolation 
between the stress deficits in the 0° and 45° orientations, 
according to 

Aa, = Aa1; cos2 26 + Aa?5 sin2 2d 

and 

Aa„ = Aa*J, cos2 20 +Aa?5 sin2 20 

(Sa) 

(m 
where the stress deficits Aa", Aa°,, Aa?5, and Aa?5 are given 
in terms of (£„£„) by Eqs. (5) and (6). On rotating back to the 
fiber axes, one obtains the plane-stress relation for stresses 
associated with proportional straining to (e,,e2,-y12 = 2E,2): 

£o 
(1 - v0

2) 
(£, + v0£2) - Aa, cos2 0 — Aa„ sin2 0 

(9a) 

.. _° 2. (£2 + v0£,) - Aa, sin2 0 — Aa„ cos2 0 

and 

2(1 + v45) 
7,2 — (Aa, - Aa„) sin 0cos 0 

(9b) 

(9c) 

Of the five possible sets of data that could be used as a 
foundation for the constitutive relations, only three are used. 
The fact that the constitutive behavior can be modeled with 
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only three of these five tests is a requirement in the elastic 
range; beyond the elastic range, this is an assumption that must 
follow from Eqs. (1) and (2). The validity of this assumption is 
assessed by evaluating the predictions of the model against the 
two neglected uniaxial tests: the shear strain, in terms of shear 
stress, and the transverse strain, in terms of stress applied at an 
angle of 45° to the fibers. For both of these tests, exact expres- 
sions for strains, in terms of stresses, follow from Eqs. (1) 
and (2). The expression for the transverse strain, in terms of 
stress applied at an angle of 45°, has been derived above and is 
given in Eq. (3). 

For an applied shear stress, the strains are readily obtained 
by considering the principal stress state, which occurs in the 
axes of symmetry at an angle of 45° to the fibers, then rotating 
back to the fiber axes. In the principal axes, the strain state is 
given by 

£i =/«(T) +/45T(-T) 

and 

£II=/45(-T)+/45T(V) 

(10a) 

(10t) 

where, again,/45T(o-) is given by Eq. (3). 
Rotating back into the fiber axes, the following expressions 

are found for the strains that result from the application of a 
shear stress: 

7» = 2e12 =/45(T) -/45(-T) -/45T(T) +/4ST(-T) 

(11a) 

and 

En = £22 = 2C/45W +/45(-T) +/45T(T) +/45T(-T)) 

(lift) 

Before matrix cracking occurs,/45(-T) = -/4S(T) and/45T(-T) = 
—/45T(T); therefore, e„ = £22 = 0. However, once the matrix 
begins to crack, the model predicts that a specimen loaded in 
pure shear will expand. 

Predictions for the two sets of data that are not included as 
input into the model are plotted against the experimental data 
of Cady1 for the SiC/CAS composite in Fig. 3. The predictions 
are obtained from the above expressions by matching/0,/45, and 
f0T to the uniaxial experimental data of Cady1 for positive values 
of a and by continuing the linear dependence on a when o- is 
negative. The slight discrepancy between theory and experi- 
ment in the elastic range is due to experimental error, the 
measured elastic constants are not quite consistent with each 
other. Figure 3 shows excellent correlation between the experi- 
mental and theoretical curves. 

(2)   Quasi-Isotropic Laminates 
The above approach is applicable to symmetric laminates of 

any stacking. A case of particular interest is the case of compos- 
ites with isotropic in-plane behavior, which requires only two 
input equations. Two examples of such composites, to within 
a reasonable approximation, are composites with lay-ups of 
(0°,±60°) and (0°,±45°,90°), which are usually referred to as 
being quasi-isotropic. As above in Eqs. (1) and (2), the formula- 
tion begins with the following proposal for strains in terms of 
stresses in any set of principal loading axes: 

£■ =/(o-t) +/T(o-„) (12a) 

and 

£II=/K)+/T(CTI) (12ft) 

where f{&) and /T(cr) are, respectively, the data for axial and 
transverse strains, in terms of stress, for any in-plane uniaxial 
tensile loading. 

As before, let 2(£i,£n) represent the solution of Eqs. (12) for 
o-,, in terms of the principal strains, and 1,(e.ll,£1) represent the 
solution for <TB; the strains resulting from any applied loading 

will produce the principal stresses 2(e„e„) and 2(e„,eI). 
Define 0 as the angle from the x1-x2 axes to the principal axes. 
Transforming the stress tensor back into the X(-x2 axes yields 
the following relations for arbitrary plane-stress loading: 

o-, = Sfe.eu) cos2 6 + Sfen,^) sin2 6 

o-2 = £(£„,£!) cos2 6 + 2(e„en) sin2 6 

and 

T = (2(e„e„) - S(eI„sI)) sin 0cos 0 

(13a) 

(13ft) 

(13c) 

Equations (13) also follow directly from the crossply model. 
Noting that, for an isotropic composite, /0(cr) = /45(CT) = /(cr) 
and/0T(cr) =/45T(<r) =/T(a), Eqs. (1) and (2) match Eqs. (12). 
Still defining S(e„en) as the inverse of Eqs. (1) and (2), the 
stress deficits in the principal axes may be written as 

Affi = (1 _ V2)(£I + v£n) S(£„e„) 

and 

Ao-„ = (j- v2) (£„ + v£,) - 2(en,e,) 

(14a) 

(14ft) 

With these stress deficits being identical in the 0° and 45° axes, 
Eqs. (8) become trivial. Then, when Eqs. (14) are substituted 
into Eqs. (9), the linear elastic parts of the two sets of equations 
cancel, and the quasi-isotropic model of Eqs. (13) is recovered. 

m.   Applications of Model to Stress Redistribution at 
Holes and Notches 

Two boundary-value problems are now solved using the con- 
stitutive model, in conjunction with the finite-element method. 
Both illustrate how the model can be used to predict stress 
redistribution and the failure mechanism for composite plates 
containing holes and notches. Two types of material behavior 
are considered. The solutions generated for plates with edge- 
notches are compared with experimentally measured strains 
for this geometry. Because the constitutive equations proposed 
above are only intended to be valid to the point at which the 
first fibers begin to break, the calculations can be expected to 
retain accuracy only when the strains in the fibers are less than 
the fiber failure strain. Loads at which fibers are expected to 
begin to fail will be noted in the sequel. 

The results show that matrix cracking accounts for a very 
large portion of the experimentally observed notch insensitivity 
that is observed in laminates such as the SiC/CAS composite in 
Fig. 1. However, the results also show that matrix cracking 
alone is insufficient to reduce stress concentrations in laminates 
such as the C/C composite in Fig. 2. 

(1)   Hole in a Plate 
A plate of a crossply brittle-matrix laminate containing a 

circular hole of radius R is loaded with an applied displacement 
8 parallel to the fibers, as shown in the insets in Figs. 4(A) 
and (B). The SiC/CAS composite in Fig. 1 and the C/C compos- 
ite in Fig. 2 are each considered. The behavior of each crossply 
is compared to that of the corresponding isotropic composite, 
whose tensile behavior in any direction is matched to the 0° 
tensile curve. 

The nonlinear problems were solved by the finite-element 
method. An in-house constitutive subroutine was developed 
and incorporated into a commercial finite-element program 
(ABAQUS). The constitutive subroutine is designed such that 
the stress-strain data that are identified in the above section, 
together with the fiber orientations, are the only inputs. 
Although the subroutine is completely capable of incorporating 
nonlinear compressive behavior into the analyses, all materials 
considered were assumed to behave linearly in compression to 
highlight the effects of the inelastic tensile strains due to matrix 
cracking. Outside the linear elastic range in tension, iteration is 
required at each load step to obtain the stresses in terms of the 
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Fig. 3.   Predictions for the response of the SiC/CAS crossply composite, compared to data from Cady' for (A) shear in the fiber axes and (B) strain 
transverse to a load applied at an angle of 45° to the fiber axes (( ) experiment and (—) prediction). 

strains. Eight-noded quadratic elements have been selected for 
the analyses. Mesh studies have been conducted to ensure accu- 
racy of the computed quantities. 

Figures 4(A) and (B) show how the maximum stress concen- 
tration in the plate varies as the applied load increases. The 
point of maximum stress lies on the hole boundary at (0,±R). 
In Figs. 4(A) and (B), this stress is normalized by the linear 
elastic stress concentration at (0,±R). For the SiC/CAS cross- 
ply (which is isotropic in the elastic range) and the isotropic 
composites, this initial stress concentration, defined as the max- 
imum stress divided by the mean stress across the ligament, is 
2.5; for the C/C crossply, which is extremely anisotropic in the 
linear range, the initial stress concentration is 3.85. Solutions 
for these stress concentrations for the case of an infinite plate 
can be found in the literature by Green and Zema." 

The C/C composite is significantly weaker in tension at an 
angle of 45° to the fibers than it is in the fiber axes; conse- 
quently, matrix cracking is most pronounced on the boundary 

of the hole, just behind the point (0,±R), as illustrated in 
Fig. 4(A). As shear cracks develop in a fairly narrow band, 
leaving the majority of the material that is above the hole 
and over the ligament uncracked and linear elastic, the stress 
concentration at the hole increases as a result of the reduction 
in the tangential shear stiffness of the material directly behind 
the edge of the hole. Matrix cracking increases the overall 
compliance of the specimen; that is, it reduces the force incre- 
ment required to further displace the upper boundary of the 
material above the hole. However, the cracking also causes the 
material to lose the shear stiffness necessary to distribute this 
force over the ligament and away from the hole boundary, and 
the end result is an increase in the stress concentration. 

Despite the large shear concentrations, the C/C crossply will 
most likely begin to fail in tension, starting at the point (0,/?). 
Failure will occur in this fashion because the shear strain at 
every point throughout the domain is less than the shear strain 
that would cause failure in a shear test when the normal strain 
that would cause failure in a uniaxial tension test is exceeded. 
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crossply, which is isotropic in the elastic range). Shaded areas of the figures indicate the extent of matrix cracking in the specimens at specific loads. 
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The isotropic version of the C/C composite cracks first at the 
point (0,R). After a slight decrease in the stress concentration 
that is due to a small reduction in axial stiffness that occurs 
before the failure strain of the fibers is attained (cf. Fig. 2), the 
stress attains the value that would cause fiber failure in a uniax- 
ial loading of the C/C crossply. The hypothetical isotropic ver- 
sion of this laminate can withstand a higher load than the 
crossply before fiber failure because of the substantially lower 
stress concentration. However, this does not necessarily imply 
that a quasi-isotropic composite is superior for this loading; a 
(0/±60) laminate, for example, would have a somewhat lower 

ultimate stress than the crossply, which would have to be 
considered. 

To accurately continue either of the above analyses beyond 
the point at which the first fiber fails, an analysis of the bridged, 
propagating crack would need to be performed. Nevertheless, 
to evaluate the impact of the decrease in axial stiffness on the 
stress concentration, the analysis is continued by extrapolating 
the input stress-strain data to the constitutive law as if no fiber 
failure had occurred. The dashed lines in Figs. 4(A) and (B) 
indicate that the small decrease in the stiffness of the material 
at the hole boundary that occurs just prior to the expected first 
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Fig. 5.   Engineering shear strains (7 = 2E12) along a line one-half notch length (i.e., 0.5a) above the notches in double-edge-notched specimens 
constructed of (A) C/C ((•) experiment (various loads), ( ) elastic, and (—) 0^/0^ = 0.1) and (B) SiC/CAS (( ) elastic). Experimental 
data plotted in Fig. 5(A) is from Evans.8 
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fiber failures, albeit an effective means of stress redistribution, 
is insufficient to reduce the stress concentration to beneath the 
linear elastic value for the C/C crossply. 

The response of the SiC/CAS composite, whose matrix 
cracking strength at an angle of 45° to the fiber axes is compara- 
ble to its matrix cracking strength in the fiber axes (cf. Fig. 1), 
is shown in Fig. 4(B). For this material, matrix cracking first 
occurs on the hole boundary at the point (0,/?), and the stress 
concentration decreases steadily until matrix cracking extends 
from the hole boundary to the comers of the plate. The rate of 
increase of the stress concentration slows when the cracked 
region extends across the entire top of the plate, and the stress 
concentration then decreases slightly as cracks develop above 
the hole. 

The curve corresponding to the isotropic version of the SiC/ 
CAS laminate in Fig. 4(B) closely follows that of the crossply. 
Two conclusions can be drawn from this result. First, the tan- 
gent modulus of the material at the hole boundary is the most 
important parameter in the problem; any mechanism that can 
reduce the tangent modulus or extend the matrix cracking 
region of the uniaxial stress strain curve will contribute strongly 
to stress redistribution. Second, for crossplies that are isotropic 
in the linear range, the computationally more efficient isotropic 
material model provides an excellent approximation to the 
material behavior, assuming that the stress of interest in the 
body acts parallel to the fiber axes. 

In all the cases considered, stressing is approximately pro- 
portional throughout the entire loading history (i.e., the relative 

magnitudes of the stress components at each point are approxi- 
mately independent of loading). This is essential if the nonlin- 
ear constitutive model introduced in this paper is to replicate 
material behavior accurately. 

This simple example clearly shows the utility of the plane- 
stress analysis incorporating the nonlinear behavior of the mate- 
rial. In both cases, elastic stress concentrations are altered by 
the mechanism of matrix cracking, and the actual load at which 
failure may begin can be significantly higher or lower than that 
predicted by simple linear elastic analysis. The results show 
that, regardless of whether matrix cracking relieves or intensi- 
fies stress concentrations, a fair amount of cracking can occur 
locally at points of high stress within a component without 
destroying its integrity. The results emphasize the importance 
of inelastic straining in the direction of the fibers in redistribut- 
ing stress. 

(2)   Double-Edge-Notched Specimens 
A plate of a crossply brittle-matrix laminate with symmetric 

edge notches extending one quarter of the way across the sec- 
tion (notch length a) is loaded in tension, as shown in the inset 
of Fig. 5(A), and examined using the constitutive model for the 
same two composites that have been considered above. The 
loading is an applied displacement parallel to one set of fibers. 
This configuration closely replicates specimens for which 
experimental data has been obtained and which will be refer- 
enced below. The notch height is 3% of the specimen width and 
is very small compared to the height of the specimen. The notch 
tips are semicircular. 

gNET _ 0.44 
aNET. 1.19 

£SS = i.3l 

ACT 

CT_ 

12. (fiber break 
probable) 

Fig. 6. Evolution of matrix cracking in a double-edge-notched SiC/CAS specimen loaded perpendicular to the notch plane. Outermost contour 
indicates the extent of the cracking region; inner contours indicate increased crack density. Extent of matrix cracking is described by the variable ACT 
(equal to (l/o-mc)(Aff,2 + ACT,,

2
)"

2
), which is a normalized average of the stress deficits. 
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The boundary-value problems were again solved using the 
finite-element method. The solution procedure for the C/C 
specimen involved repeatedly stepping the applied displace- 
ment forward by a very small increment, iterating twice for the 
displacements within the domain, and proceeding to the next 
small displacement increment, regardless of whether equilib- 
rium had been satisfied to within an acceptable tolerance. Con- 
vergence studies were conducted to ensure that the results 
presented here are independent of mesh size and displacement 
increment size. Convergence was attained with an analysis of 
400 increments. 

The solution for the SiC/CAS crossply was generated from 
the solution for a composite with a slightly stiffer 45° stress- 
strain curve. This solution served as the initial condition for 
each level of applied displacement. 

Figures 5(A) and (B) show the engineering shear strain, yxy, 
normalized by the remote tensile strain, £, away from the 
notched area, along a line one-half crack length above the 
notches for the SiC/CAS and the C/C composites. In each of 
Figs. 5(A) and (B), the dashed line corresponds to the shear 
strains from a linear elastic analysis, and the solid lines corre- 
spond to computed normalized shear strains at the values of the 
net section stress, 0^ (equal to P/(2a)), indicated for loads P 
ranging up to the load at'which fiber breakage is predicted to 
occur. P is calculated as part of the solution to the boundary- 
value problem. 

Figure 5(A) contains the numerical predictions for the C/C 
system. Normalized shear strains are plotted for loads in the 
linear range and for the load at which fiber fracture is predicted 

to begin. For the C/C composite, this occurs when the value of 
°"NET is —10% of the uniaxial matrix cracking stress, o-mc. The 
shear-strain concentration is slightly reduced by matrix crack- 
ing but the straining remains almost proportional throughout 
the loading. This result is confirmed by experimental data 
reported by Evans,8 which is superimposed onto Fig. 5(A). The 
Evans data, which is for several loads up to and beyond the 
stress at which fiber breaking is predicted to begin, fall within 
the range of shear strains that are observed in the analysis. This 
experimentally verifies that the strains remain almost propor- 
tional and that the model provides a highly accurate prediction 
of the strain field. 

The numerical results and the experimental data for the C/C 
composite indicate that shear strains are concentrated in sharp 
shear bands extending vertically just behind the notch tips, as 
will be more evident in a plot shown later. Note that the peak 
value of 7^ is greater than e by a factor of >5 and is greater 
than the corresponding normalized strain level for the SiC/CAS 
composite in Fig. 5(B) by a factor of ~5. This large difference 
is due to the strong anisotropy of the C/C material. 

Figure 5(B) reveals that the shear-strain concentrations in the 
SiC/CAS specimen in the elastic range are much smaller than 
those in the C/C specimen, which is expected because of the 
almost isotropic elastic properties of the SiC/CAS laminate. 
Matrix cracking that occurs around the notch tip eases the 
shear-strain concentrations very slightly by the time the first 
fiber fails, at a net section stress of ~130% of the uniaxial 
matrix cracking stress. Despite this relatively small redistribu- 
tion, the strains again remain almost proportional. 

°NET = 0.075 

<*NET = 0.10 

°NET = 0.15 

Ac 
a mc 

0 (uncracked) 

0.23 

0.46 (fiber break 
probable) 

Fig. 7. Evolution of matrix cracking in a double-edge-notched C/C specimen loaded perpendicular to the notch plane. Outermost contour indicates 
the extent of the cracking region; inner contours indicate increased crack density. Extent of matrix cracking is described by the variable Ao- (equal to 
(l/crmc)(Aa,2 + ACT,,

2
)"

2
), which is a normalized average of the stress deficits. 
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As in the case of a plate with a circular hole, cracking in 
the notched SiC/CAS specimen relieves stress concentrations, 
whereas cracking in the corresponding C/C specimen intensi- 
fies them. For the C/C specimen, the stress concentration, 
defined as the stress at the notch tip divided by the average 
stress across the ligament (0-^), is 10 for the elastic case, then 
increases to 14 at fiber failure. For the SiC/CAS specimen, the 
stress concentration decreases from the elastic value of 5.3 to 
~2.5 at fiber failure. 

The matrix cracking stress for an unnotched specimen of the 
C/C composite loaded parallel to one set of fibers is greater 
than that of the SiC/CAS composite by a factor of 4, and the 
stress at which fiber failure begins under such conditions is 
greater for the C/C composite by a factor of 1.25. However, 
because of the superior ability of the SiC/CAS composite to 
redistribute stresses through matrix cracking, the applied stress 
at which fiber failure is predicted to begin in the notched SiC/ 
CAS specimen is higher than that predicted for the C/C com- 
posite. Stress redistribution due to matrix cracking more than 
doubles the load that is required to break fibers in the notched 
SiC/CAS specimen, relative to the load that is predicted based 
on the elastic stress concentration. 

Figure 6 shows the development of matrix cracking in the 
SiC/CAS specimen. The contours are a normalized average 
of the principal stress deficits due to cracking: ACT = 
(l/o-mc)(Aor,2 + Aan

2)1/2, where Aort and Acrn are as defined in 
Eqs. (8a) and (8ft), respectively. The outer contour, correspond- 
ing to where this quantity first becomes nonzero, depicts the 
extent of the region undergoing matrix cracking at a given load, 
and the inner contours indicate an increased crack density. The 
contour associated with the largest value of ACT shown indicates 
the stress decrease at which fiber failure would occur in a tensile 
test conducted at an angle of 45° to the fiber axes. Matrix cracks 
begin at the notch tips, then spread toward the center of the 
specimen. The first fiber failures are most likely to occur at the 
notch tips in the direction of the applied load. 

Figure 7 shows the contours of maximum principal stress 
deficits that are predicted for the C/C composite. For this com- 
posite, cracking is initially concentrated in narrow shear bands 
above the notch tips, consistent with the behavior discussed 
earlier. A region of less-dense cracking develops along the 
ligament between the notches. For this specimen, fiber failure 
will most probably first occur on the notch boundaries, just 
behind the notch tips. 

IV.   Conclusions 

Matrix cracking in brittle-matrix laminate composites can 
result in significant inelastic strain contributions, which, in turn, 
can lead to important stress redistribution at sites of high stress 
concentration. Matrix cracking can either ease or intensify 
stress concentrations. In this paper, a constitutive model has 
been presented that uses data from two uniaxial tests as input 
and is capable of predicting strains under proportional stressing 
for multiaxial plane-stress states. This model has been used to 
explore the effects of matrix cracking on stresses and strains in 
laminates containing holes and notches. 
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